On the History of Ecosystem Dynamical Modeling: The Rise and Promises of Qualitative Models
Abstract
:1. Introduction
2. Overview of Ecosystem Ecology and Dynamical Modeling Approaches
2.1. Compartment Modeling
2.2. Qualitative Modeling Approaches
2.2.1. Camerano’s “Reaction Networks”
2.2.2. Loop Analysis
2.2.3. Qualitative Reasoning
2.2.4. Models Based on States and Transitions
3. Ecosystem Models’ Properties and Their Limitations
- 1.
- Grasping the qualitative dynamics of the system (i.e., not requiring any quantitative values, based on state and transitions or on state variable variations);
- 2.
- Making as few assumptions as possible about interactions (on parameters and/or functional form);
- 3.
- Being explanatory in a general sense, i.e., answering to why-questions [99]; and
- 4.
- Being predictive, i.e., forecasting the future state of a system before the system reaches it [100].
3.1. Quantitative or Qualitative Variables?
3.2. How Changes Occur over Time: The Variables Update Mode
3.3. Deterministic or Not Deterministic?
3.4. Uncertainty as Stochasticity
3.5. Predictive Capacity
3.6. From Properties to an Innovative Formalism
- 1.
- The ability to grasp the qualitative dynamics does not discard any formalism, as both quantitative and qualitative models can provide insights about the qualitative dynamics. However, loop analysis is restricted to equilibrium systems, which can hardly be known a priori and may be inappropriate for non-equilibrium systems commonly found in ecology and environmental sciences.
- 2.
- As we aim to make as few assumptions as possible about parameters, we will discard quantitative formalisms for they impose strong constraints on data requirements (e.g., fixed or variable interaction coefficients, knowledge of functional forms) for building models. Estimating transition probabilities for Markov models also requires sufficient amounts of data, which are not always available.
- 3.
- All formalisms can provide some form of explanation. However, some ecosystem models may act as black boxes and thus prevent a detailed and meaningful analysis. In contrast, models like state-and-transition models can enable tracking causal pathways leading to a particular outcome.
- 4.
- Predictive capacity refers to the ability to forecast the future state of a system to some specific level of accuracy using a computational or mathematical model [100]. In this regard, non-formal models such as state-and-transition models are not predictive as they rely only on observed states and transitions between them and do not infer unobserved states.
4. The Ecological Discrete-Event Networks (EDEN) Modeling Framework
4.1. A Brief Overview of the EDEN Framework
4.2. A Qualitative Perspective on Ecological Components
4.3. Discrete Events as the Basic Unit of Change
4.4. Accounting for Uncertainty in the Event Timing: The Asynchronous Update Mode
4.5. Possibilism as an Innovative Approach to Non-Determinism
4.6. The State-Transition Graph as the Assemblage of Model Properties
- A strongly connected component (SCC) is a set of mutually reachable states, i.e., any system change in it is reversible. It can be cyclic (only one trajectory, e.g., yellow states, Figure 8a) or complex (several trajectories, e.g., green states, Figure 8a), highlighting the presence of one or several feedback loops, respectively. Cyclic SCCs are discrete analogues of limit cycles [139] and have been used in community assembly to define cyclic changes in species community composition [106,136]. On the other hand, complex SCCs have been observed in cell differentiation [138], rangeland dynamics [90,140] and geomorphology [141], and have been predicted theoretically [118]. In addition, this concept is crucial in state-and-transition models for defining the concept of “state”, which is “a sustained equilibrium that is expressed by a specific suite of vegetative communities” [90].
- Finally, basins are defined as sets of states which (1) are not part of an SCC or stable state and (2) all lead to the same SCCs or stable states (Figure 8, orange and non-terminal blue states). Although they do not have well-known empirical counterparts, a recent model based on protist community disassembly experiments [107] confirmed the relevance of such structures, suggesting their role as sets of transient states with indeterminate fate.
- Is an ecosystem collapse avoidable?
- Is a productive ecosystem state reachable and stable (e.g., included in an SCC)?
- Is this productive state always preceded at some time by, say, a disturbance or a specific process (rule)?
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golley, F.B. A History of the Ecosystem Concept in Ecology: More Than the Sum of the Parts; Yale University Press: New Haven, CT, USA, 1993. [Google Scholar]
- Varenne, F. Histoire de la modélisation: Quelques jalons. In Modélisation, Succès et Limites; French Academy of Technologies: Paris, France, 2016. [Google Scholar]
- Patten, B.C. A Primer for Ecological Modeling and Simulation with Analog and Digital Computers. In Systems Analysis and Simulation in Ecology; Elsevier: Amsterdam, The Netherlands, 1971; pp. 3–121. [Google Scholar] [CrossRef]
- Noy-Meir, I. Stability of Grazing Systems: An Application of Predator-Prey Graphs. J. Ecol. 1975, 63, 459. [Google Scholar] [CrossRef]
- Innis, G.S. (Ed.) Grassland Simulation Model; Ecological Studies; Springer: New York, NY, USA, 1978. [Google Scholar] [CrossRef]
- McCallum, H. Population Parameters: Estimation for Ecological Models, 1st ed.; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C. Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef]
- Gaucherel, C.; Campillo, F.; Misson, L.; Guiot, J.; Jean-Jacques, B. Parameterization of a process-based tree-growth model: Comparison of optimisation, MCMC and Particle filtering algorithms. Environ. Model. Softw. 2008, 23, 1280–1288. [Google Scholar] [CrossRef]
- Levins, R. Qualitative Analysis of Partially Specified Systems. Ann. N. Y. Acad. Sci. 1974, 231, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Odenbaugh, J. The strategy of “The strategy of model building in population biology”. Biol. Philos. 2006, 21, 607–621. [Google Scholar] [CrossRef]
- Levins, R. The strategy of model building on population biology. Am. Sci. 1966, 54, 421–431. [Google Scholar]
- Bredeweg, B.; Salles, P.; Neumann, M. Ecological Applications of Qualitative Reasoning. In Ecological Informatics: Scope, Techniques and Applications; Recknagel, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 15–47. [Google Scholar] [CrossRef]
- Salski, A. Ecological Applications of Fuzzy Logic. In Ecological Informatics: Scope, Techniques and Applications; Recknagel, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–14. [Google Scholar] [CrossRef]
- Campbell, C.; Yang, S.; Albert, R.; Shea, K. A network model for plant–pollinator community assembly. Proc. Natl. Acad. Sci. USA 2011, 108, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Gaucherel, C.; Pommereau, F. Using discrete systems to exhaustively characterize the dynamics of an integrated ecosystem. Methods Ecol. Evol. 2019, 10, 1615–1627. [Google Scholar] [CrossRef]
- Dambacher, J.M.; Li, H.W.; Rossignol, P.A. Relevance of Community Structure in Assessing Indeterminacy of Ecological Predictions. Ecology 2002, 83, 1372–1385. [Google Scholar] [CrossRef]
- May, R.M. Qualitative Stability in Model Ecosystems. Ecology 1973, 54, 638–641. [Google Scholar] [CrossRef]
- Buis, R. Biology and Mathematics: History and Challenges; Biology Series; ISTE: London, UK, 2019. [Google Scholar]
- Odum, E.P. Fundamentals of Ecology, 1st ed.; Saunders: Philadelphia, PA, USA, 1953. [Google Scholar]
- von Bertalanffy, L. General System Theory: Foundations, Development, Applications; G. Braziller: Brooklyn, NY, USA, 1969. [Google Scholar]
- Vernadski, V.I. Biosfera; Nauchnoe Khimiko-Techniche-Skoye Izdatel’stvo: Leningrad, Russia, 1926. [Google Scholar]
- Riley, G.A. Limnological Studies in Connecticut. Ecol. Monogr. 1939, 9, 53–94. [Google Scholar] [CrossRef]
- Odum, H.T.; Odum, E.P. Trophic Structure and Productivity of a Windward Coral Reef Community on Eniwetok Atoll. Ecol. Monogr. 1955, 25, 291–320. [Google Scholar] [CrossRef]
- Euler, L. Introductio in Analysin Infinitorum; Apud Marcum-Michaelem Bousquet & Socios: Lausanne, Switzerland, 1748; Volume 1. [Google Scholar]
- Verhulst, P.F. Notice sur la loi que la population poursuit dans son accroissement. In Correspondance Mathématique et Physique, Société Belge de Librairie ed.; Quetelet, A., Ed.; Imprimerie Vandekerckhove: Bruxelles, Belgium, 1838; Volume 10, pp. 113–121. [Google Scholar]
- Lotka, A.J. Relation between Birth Rates and Death Rates. Science 1907, 26, 21–22. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, F.R.; Lotka, A.J. A problem in age-distribution. London Edinburgh Dublin Philos. Mag. J. Sci. 1911, 21, 435–438. [Google Scholar] [CrossRef]
- Bacaër, N. A Short History of Mathematical Population Dynamics; Springer: London, UK, 2011. [Google Scholar]
- Lotka, A.J. Analytical Note on Certain Rhythmic Relations in Organic Systems. Proc. Natl. Acad. Sci. USA 1920, 6, 410–415. [Google Scholar] [CrossRef]
- Volterra, V. Fluctuations in the Abundance of a Species considered Mathematically. Nature 1926, 118, 558–560. [Google Scholar] [CrossRef]
- Patten, B.C. An Introduction to the Cybernetics of the Ecosystem: The Trophic-Dynamic Aspect. Ecology 1959, 40, 221–231. [Google Scholar] [CrossRef]
- Brown, R.F. Compartmental System Analysis: State of the Art. IEEE Trans. Biomed. Eng. 1980, 27, 1–11. [Google Scholar] [CrossRef]
- Kowal, N.E. A Rationale for Modeling Dynamic Ecological Systems. In Systems Analysis and Simulation in Ecology; Patten, B.C., Ed.; Academic Press: Cambridge, MA, USA, 1971; pp. 123–194. [Google Scholar] [CrossRef]
- Bledsoe, L.J.; Van Dyne, G.M. Compartment model simulation of secondary succession. In Systems Analysis and Simulation in Ecology; Patten, B.C., Ed.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Borsuk, M.E.; Stow, C.A.; Reckhow, K.H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecol. Model. 2004, 173, 219–239. [Google Scholar] [CrossRef]
- Uusitalo, L.; Tomczak, M.T.; Müller-Karulis, B.; Putnis, I.; Trifonova, N.; Tucker, A. Hidden variables in a Dynamic Bayesian Network identify ecosystem level change. Ecol. Inform. 2018, 45, 9–15. [Google Scholar] [CrossRef]
- Botter, G.; Settin, T.; Marani, M.; Rinaldo, A. A stochastic model of nitrate transport and cycling at basin scale. Water Resour. Res. 2006, 42, 1–14. [Google Scholar] [CrossRef]
- Müller, F. State-of-the-art in ecosystem theory. Ecol. Model. 1997, 100, 135–161. [Google Scholar] [CrossRef]
- Palladino, P. Defining ecology: Ecological theories, mathematical models, and applied biology in the 1960s and 1970s. J. Hist. Biol. 1991, 24, 223–243. [Google Scholar] [CrossRef]
- Clements, F.E. Plant Succession; An Analysis of the Development of Vegetation; Carnegie Institution of Washington: Washington, DC, USA, 1916. [Google Scholar] [CrossRef]
- Fath, B.D. Distributed control in ecological networks. Ecol. Model. 2004, 179, 235–245. [Google Scholar] [CrossRef]
- Patten, B.C.; Odum, E.P. The Cybernetic Nature of Ecosystems. Am. Nat. 1981, 118, 886–895. [Google Scholar] [CrossRef]
- Innis, G.S. Objectives and Structure for a Grassland Simulation Model. In Grassland Simulation Model; Innis, G.S., Ed.; Ecological Studies; Springer: New York, NY, USA, 1978; pp. 1–30. [Google Scholar] [CrossRef]
- Patten, B.C. (Ed.) Systems Analysis and Simulation in Ecology: Volume III; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Purves, D.; Scharlemann, J.P.W.; Harfoot, M.; Newbold, T.; Tittensor, D.P.; Hutton, J.; Emmott, S. Time to model all life on Earth. Nature 2013, 493, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Harfoot, M.B.J.; Newbold, T.; Tittensor, D.P.; Emmott, S.; Hutton, J.; Lyutsarev, V.; Smith, M.J.; Scharlemann, J.P.W.; Purves, D.W. Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model. PLoS Biol. 2014, 12, e1001841. [Google Scholar] [CrossRef]
- Fitz, H.C.; DeBellevue, E.B.; Costanza, R.; Boumans, R.; Maxwell, T.; Wainger, L.; Sklar, F.H. Development of a general ecosystem model for a range of scales and ecosystems. Ecol. Model. 1996, 88, 263–295. [Google Scholar] [CrossRef]
- Bartlett, L.J.; Newbold, T.; Purves, D.W.; Tittensor, D.P.; Harfoot, M.B.J. Synergistic impacts of habitat loss and fragmentation on model ecosystems. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161027. [Google Scholar] [CrossRef]
- Jørgensen, S.E. (Ed.) Ecological Model Types. In Developments in Environmental Modelling; Elsevier: Amsterdam, The Netherlands, 2016; Volume 28. [Google Scholar]
- Likens, G.E. The Ecosystem Approach: Its Use and Abuse. In Excellence in Ecology; Ecology Institute: Berlin, Germany, 1992; Volume 3. [Google Scholar]
- Finn, J.T. Flow Analysis of Models of the Hubbard Brook Ecosystem. Ecology 1980, 61, 562–571. [Google Scholar] [CrossRef]
- Nielsen, S.N. A New Ecology: Systems Perspective; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Gallucci, V.F. On the Principles of Thermodynamics in Ecology. Annu. Rev. Ecol. Syst. 1973, 4, 329–357. [Google Scholar] [CrossRef]
- Odum, E.P. The Strategy of Ecosystem Development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Patten, B.C. Network integration of ecological extremal principles: Exergy, emergy, power, ascendency, and indirect effects. Ecol. Model. 1995, 79, 75–84. [Google Scholar] [CrossRef]
- Odum, H.T. Systems Ecology: An Introduction; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Jørgensen, S.E.; Mejer, H. Ecological buffer capacity. Ecol. Model. 1977, 3, 39–61. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Physical Biology; Williams & Wilkins: Baltimore, MD, USA, 1925. [Google Scholar]
- Prigogine, I.; Wiame, J.M. Biologie et thermodynamique des phénomènes irréversibles. Experientia 1946, 2, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Fath, B.D.; Patten, B.C.; Choi, J.S. Complementarity of Ecological Goal Functions. J. Theor. Biol. 2001, 208, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.P.; Martins, N.; Gouveia, J.B. A review of emergy theory, its application and latest developments. Renew. Sustain. Energy Rev. 2016, 54, 882–888. [Google Scholar] [CrossRef]
- Cohen, J.E. Lorenzo Camerano’s Contribution to Early Food Web Theory. In Frontiers in Mathematical Biology; Levin, S.A., Levin, S.A., Eds.; Series Title: Lecture Notes in Biomathematics; Springer: Berlin/Heidelberg, Germany, 1994; Volume 100, pp. 351–359. [Google Scholar] [CrossRef]
- Camerano, L. On the Equilibrium of Living Beings by Means of Reciprocal Destruction. In Frontiers in Mathematical Biology; Levin, S.A., Ed.; Lecture Notes in Biomathematics; Springer: Berlin/Heidelberg, Germany, 1880; pp. 360–380. [Google Scholar] [CrossRef]
- Bender, E.A.; Case, T.J.; Gilpin, M.E. Perturbation Experiments in Community Ecology: Theory and Practice. Ecology 1984, 65, 1–13. [Google Scholar] [CrossRef]
- Wright, S. Correlation and Causation. J. Agric. Res. 1921, 20, 557–585. [Google Scholar]
- Dambacher, J.M.; Li, H.W.; Rossignol, P.A. Qualitative predictions in model ecosystems. Ecol. Model. 2003, 161, 79–93. [Google Scholar] [CrossRef]
- Justus, J. Qualitative Scientific Modeling and Loop Analysis. Philos. Sci. 2005, 72, 1272–1286. [Google Scholar] [CrossRef]
- Puccia, C.J.; Levins, R. Qualitative Modeling in Ecology: Loop Analysis, Signed Digraphs, and Time Averaging. In Qualitative Simulation Modeling and Analysis; Luker, P.A., Schmidt, B., Fishwick, P.A., Luker, P.A., Eds.; Springer: New York, NY, USA, 1991; Volume 5, pp. 119–143. [Google Scholar] [CrossRef]
- Justus, J. Loop analysis and qualitative modeling: Limitations and merits. Biol. Philos. 2007, 21, 647–666. [Google Scholar] [CrossRef]
- Dambacher, J.M.; Li, H.W.; Wolff, J.O.; Rossignol, P.A. Parsimonious Interpretation of the Impact of Vegetation, Food, and Predation on Snowshoe Hare. Oikos 1999, 84, 530. [Google Scholar] [CrossRef]
- Marzloff, M.P.; Dambacher, J.M.; Johnson, C.R.; Little, L.R.; Frusher, S.D. Exploring alternative states in ecological systems with a qualitative analysis of community feedback. Ecol. Model. 2011, 222, 2651–2662. [Google Scholar] [CrossRef]
- Novak, M.; Wootton, J.T.; Doak, D.F.; Emmerson, M.; Estes, J.A.; Tinker, M.T. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. Ecology 2011, 92, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Bode, M.; Baker, C.M.; Benshemesh, J.; Burnard, T.; Rumpff, L.; Hauser, C.E.; Lahoz-Monfort, J.J.; Wintle, B.A. Revealing beliefs: Using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 2017, 8, 1012–1021. [Google Scholar] [CrossRef]
- Ortiz, M.; Levins, R.; Campos, L.; Berrios, F.; Campos, F.; Jordán, F.; Hermosillo, B.; Gonzalez, J.; Rodriguez, F. Identifying keystone trophic groups in benthic ecosystems: Implications for fisheries management. Ecol. Indic. 2013, 25, 133–140. [Google Scholar] [CrossRef]
- Ortiz, M.; Levins, R. Self-feedbacks determine the sustainability of human interventions in eco-social complex systems: Impacts on biodiversity and ecosystem health. PLoS ONE 2017, 12, e0176163. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, C.; Krebs, C.J.; Stenseth, N.C. Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems. Ecol. Model. 2015, 312, 374–384. [Google Scholar] [CrossRef]
- Guerrin, F. Qualitative reasoning about an ecological process: Interpretation in hydroecology. Ecol. Model. 1991, 59, 165–201. [Google Scholar] [CrossRef]
- Salles, P.; Bredeweg, B. Modelling population and community dynamics with qualitative reasoning. Ecol. Model. 2006, 195, 114–128. [Google Scholar] [CrossRef]
- Kuipers, B. Qualitative simulation. Artif. Intell. 1986, 29, 289–338. [Google Scholar] [CrossRef]
- Bredeweg, B.; Linnebank, F.; Bouwer, A.; Liem, J. Garp3—Workbench for qualitative modelling and simulation. Ecol. Inform. 2009, 4, 263–281. [Google Scholar] [CrossRef]
- Goulart, F.F.; Salles, P.; Saito, C.H.; Machado, R.B. How do different agricultural management strategies affect bird communities inhabiting a savanna-forest mosaic? A qualitative reasoning approach. Agric. Ecosyst. Environ. 2013, 164, 114–130. [Google Scholar] [CrossRef]
- Kansou, K.; Nuttle, T.; Farnsworth, K.; Bredeweg, B. How plants changed the world: Using qualitative reasoning to explain plant macroevolution’s effect on the long-term carbon cycle. Ecol. Inform. 2013, 17, 117–142. [Google Scholar] [CrossRef]
- Hardy, M. Botanical survey of Scotland: A general map of the highlands with a sketch of the history and methods. Scott. Geogr. Mag. 1906, 22, 229–241. [Google Scholar] [CrossRef]
- Transeau, E.N. Successional Relations of the Vegetation about Yarmouth, Nova Scotia. Plant World 1909, 12, 271–281. [Google Scholar]
- Londo, G. Successive mapping of dune slack vegetation. Vegetatio 1974, 29, 51–61. [Google Scholar] [CrossRef]
- Sampson, A.W. Plant succession in relation to range management. In Bulletin No. 791; U.S. Department of Agriculture: Washington, DC, USA, 1919; Volume 791, p. 76. [Google Scholar]
- Sampson, A.W. Succession as a Factor in Range Management. J. For. 1917, 15, 593–596. [Google Scholar] [CrossRef]
- Dyksterhuis, E.J. Condition and Management of Range Land Based on Quantitative Ecology. J. Range Manag. 1949, 2, 104. [Google Scholar] [CrossRef]
- Westoby, M.; Walker, B.; Noy-Meir, I. Opportunistic Management for Rangelands Not at Equilibrium. J. Range Manag. 1989, 42, 266. [Google Scholar] [CrossRef]
- Stringham, T.K.; Krueger, W.C.; Shaver, P.L. State and transition modeling: An ecological process approach. Rangel. Ecol. Manag. Range Manag. Arch. 2003, 56, 106–113. [Google Scholar]
- Noble, I.R.; Slatyer, R.O. Post fire succession of plants in Mediterranean ecosystems. In Proceedings of the Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems, Palo Alto, CA, USA, 1–5 August 1977; Mooney, H.A., Conrad, C.E., Eds.; Forest Service, U.S. Department of Agriculture: Washington, DC, USA, 1977. [Google Scholar]
- Waggoner, P.E.; Stephens, G.R. Transition Probabilities for a Forest. Nature 1970, 225, 1160–1161. [Google Scholar] [CrossRef]
- Horn, H.S. Markovian properties of forest succession. In Ecology and Evolution of Communities; Harvard University Press: Cambridge, MA, USA, 1975; pp. 196–211. [Google Scholar]
- Scanlan, J. The use of state and transition models for predicting vegetation change in rangelands. Trop. Grasslands 1994, 28, 229–240. [Google Scholar]
- Van Dyke, C. Boxing daze—Using state-and-transition models to explore the evolution of socio-biophysical landscapes. Prog. Phys. Geogr. Earth Environ. 2015, 39, 594–621. [Google Scholar] [CrossRef]
- Briske, D.D. (Ed.) Rangeland Systems: Processes, Management and Challenges; Springer Series on Environmental Management; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Arico, S.; Aronson, J.; Baron, J.S.; Bridgewater, P.; Cramer, V.A.; Epstein, P.R.; Ewel, J.J.; Klink, C.A.; Lugo, A.E.; et al. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 2006, 15, 1–7. [Google Scholar] [CrossRef]
- Nicholson, A.E.; Flores, M.J. Combining state and transition models with dynamic Bayesian networks. Ecol. Model. 2011, 222, 555–566. [Google Scholar] [CrossRef]
- Van Fraassen, B.C. The Scientific Image; Clarendon Press: Oxford, UK, 1980. [Google Scholar]
- Beckage, B.; Gross, L.J.; Kauffman, S. The limits to prediction in ecological systems. Ecosphere 2011, 2, art125. [Google Scholar] [CrossRef]
- Mossel, E.; Steel, M. Random biochemical networks and the probability of self-sustaining autocatalysis. J. Theor. Biol. 2005, 233, 327–336. [Google Scholar] [CrossRef]
- Rykiel, E.J. Artificial intelligence and expert systems in ecology and natural resource management. Ecol. Model. 1989, 46, 3–8. [Google Scholar] [CrossRef]
- Drescher, M.; Perera, A.H.; Johnson, C.J.; Buse, L.J.; Drew, C.A.; Burgman, M.A. Toward rigorous use of expert knowledge in ecological research. Ecosphere 2013, 4, art83. [Google Scholar] [CrossRef]
- Rosenzweig, M.L.; MacArthur, R.H. Graphical Representation and Stability Conditions of Predator-Prey Interactions. Am. Nat. 1963, 97, 209–223. [Google Scholar] [CrossRef]
- Fukami, T. Historical Contingency in Community Assembly: Integrating Niches, Species Pools, and Priority Effects. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 1–23. [Google Scholar] [CrossRef]
- Song, C.; Fukami, T.; Saavedra, S. Untangling the complexity of priority effects in multispecies communities. Ecol. Lett. 2021, 2301–2313. [Google Scholar] [CrossRef] [PubMed]
- Weatherby, A.J.; Warren, P.H.; Law, R. Coexistence and collapse: An experimental investigation of the persistent communities of a protist species pool. J. Anim. Ecol. 1998, 67, 554–566. [Google Scholar] [CrossRef]
- Bashari, H.; Smith, C.; Bosch, O.J.H. Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks. Agric. Syst. 2008, 99, 23–34. [Google Scholar] [CrossRef]
- Thomas, R. Boolean formalization of genetic control circuits. J. Theor. Biol. 1973, 42, 563–585. [Google Scholar] [CrossRef]
- Kauffman, S. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22, 437–467. [Google Scholar] [CrossRef]
- de Goër de Herve, M.; Thomas, C.; Cosme, M.; Warren, P.H.; Gaucherel, C. Is a community state reachable, and why? Authorea 2022. [Google Scholar] [CrossRef]
- Sugita, M. Functional analysis of chemical systems in vivo using a logical circuit equivalent. II. The idea of a molecular automaton. J. Theor. Biol. 1963, 4, 179–192. [Google Scholar] [CrossRef]
- Huang, S. Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery. J. Mol. Med. 1999, 77, 469–480. [Google Scholar] [CrossRef]
- Bloomingdale, P.; Nguyen, V.A.; Niu, J.; Mager, D.E. Boolean Network Modeling in Systems Pharmacology. J. Pharmacokinet. Pharmacodyn. 2018, 45, 159–180. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R. On the Relation between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations. In Numerical Methods in the Study of Critical Phenomena; Della Dora, J., Demongeot, J., Lacolle, B., Eds.; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1981; pp. 180–193. [Google Scholar] [CrossRef]
- Richelle, J. Boolean approach of a prey-predator system. In Kinetic Logic A Boolean Approach to the Analysis of Complex Regulatory Systems, Proceedings of the EMBO Course “Formal Analysis of Genetic Regulation”; Brussels, Belgium, 6–16 September 1977, Thomas, R., Ed.; Lecture Notes in Biomathematics; Springer: Berlin/Heidelberg, Germany, 1979; pp. 502–507. [Google Scholar] [CrossRef]
- Cordier, M.O.; Largouët, C.; Zhao, Y. Model-Checking an Ecosystem Model for Decision-Aid. In Proceedings of the IEEE 26th International Conference 681 on Tools with Artificial Intelligence, Limassol, Cyprus, 10–12 November 2014; Volume 682, pp. 539–543. [Google Scholar] [CrossRef]
- Cassandras, C.G.; Lafortune, S. Introduction to Discrete Event Systems, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Finch-Savage, W.E.; Steckel, J.R.A.; Phelps, K. Germination and post-germination growth to carrot seedling emergence: Predictive threshold models and sources of variation between sowing occasions. New Phytol. 1998, 139, 505–516. [Google Scholar] [CrossRef]
- Munsch, S.H.; Andrews, K.S.; Crozier, L.G.; Fonner, R.; Gosselin, J.L.; Greene, C.M.; Harvey, C.J.; Lundin, J.I.; Pess, G.R.; Samhouri, J.F.; et al. Potential for ecological nonlinearities and thresholds to inform Pacific salmon management. Ecosphere 2020, 11, e03302. [Google Scholar] [CrossRef]
- D’Amario, S.C.; Rearick, D.C.; Fasching, C.; Kembel, S.W.; Porter-Goff, E.; Spooner, D.E.; Williams, C.J.; Wilson, H.F.; Xenopoulos, M.A. The prevalence of nonlinearity and detection of ecological breakpoints across a land use gradient in streams. Sci. Rep. 2019, 9, 3878. [Google Scholar] [CrossRef]
- Garg, A.; Di Cara, A.; Xenarios, I.; Mendoza, L.; De Micheli, G. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 2008, 24, 1917–1925. [Google Scholar] [CrossRef]
- Mendoza, L.; Alvarez-Buylla, E.R. Dynamics of the genetic regulatory Network for Arabidopsis thaliana flower morphogenesis. J. Theor. Biol. 1998, 193, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Longo, G. How Future Depends on Past and Rare Events in Systems of Life. Found. Sci. 2018, 23, 443–474. [Google Scholar] [CrossRef]
- Gillson, L. A ‘large infrequent disturbance’ in an East African savanna. Afr. J. Ecol. 2006, 44, 458–467. [Google Scholar] [CrossRef]
- Clarke, L. Possibilistic Thinking: A New Conceptual Tool for Thinking about Extreme Events. Soc. Res. 2008, 75, 669–690. [Google Scholar] [CrossRef]
- Han, Y.; Kristensen, N.P.; Buckley, Y.M.; Maple, D.J.; West, J.; McDonald-Madden, E. Predicting the ecosystem-wide impacts of eradication with limited information using a qualitative modelling approach. Ecol. Model. 2020, 430, 109122. [Google Scholar] [CrossRef]
- Kristensen, N.P.; Chisholm, R.A.; McDonald-Madden, E. Dealing with high uncertainty in qualitative network models using Boolean analysis. Methods Ecol. Evol. 2019, 10, 1048–1061. [Google Scholar] [CrossRef]
- Monteiro, P.; Abou-Jaoudé, W.; Thieffry, D.; Chaouiya, C. Model Checking Logical Regulatory Networks. IFAC Proc. Vol. 2014, 47, 170–175. [Google Scholar] [CrossRef]
- Leitner-Fischer, F.; Leue, S. Causality Checking for Complex System Models. In Proceedings of the Verification, Model Checking, and Abstract Interpretation, Rome, Italy, 20–22 January 2013; Giacobazzi, R., Berdine, J., Mastroeni, I., Eds.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2013; pp. 248–267. [Google Scholar] [CrossRef]
- Adams, V.M.; Barnes, M.; Pressey, R.L. Shortfalls in Conservation Evidence: Moving from Ecological Effects of Interventions to Policy Evaluation. One Earth 2019, 1, 62–75. [Google Scholar] [CrossRef]
- Gaucherel, C.; Carpentier, C.; Geijzendorffer, I.R.; Noûs, C.; Pommereau, F. Discrete-event models for conservation assessment of integrated ecosystems. Ecol. Inform. 2020, 61, 101205. [Google Scholar] [CrossRef]
- Cosme, M.; Hély, C.; Pommereau, F.; Pasquariello, P.; Tiberi, C.; Treydte, A.; Gaucherel, C. Qualitative Modeling for Bridging Expert-Knowledge and Social-Ecological Dynamics of an East African Savanna. Land 2021, 11, 42. [Google Scholar] [CrossRef]
- Thomas, C.; Maximilien, C.; Cédric, G.; Franck, P. Model-checking ecological state-transition graphs. PLoS Comput. Biol. 2022, 18, e1009657. [Google Scholar] [CrossRef]
- Luh, H.K.; Pimm, S.L. The Assembly of Ecological Communities: A Minimalist Approach. J. Anim. Ecol. 1993, 62, 749. [Google Scholar] [CrossRef]
- Serván, C.A.; Allesina, S. Tractable models of ecological assembly. Ecol. Lett. 2021, 24, 1029–1037. [Google Scholar] [CrossRef]
- Scopélitis, J.; Andréfouet, S.; Largouët, C. Modelling coral reef habitat trajectories: Evaluation of an integrated timed automata and remote sensing approach. Ecol. Model. 2007, 205, 59–80. [Google Scholar] [CrossRef]
- Yachie-Kinoshita, A.; Onishi, K.; Ostblom, J.; Langley, M.A.; Posfai, E.; Rossant, J.; Zandstra, P.W. Modeling signaling-dependent pluripotency with Boolean logic to predict cell fate transitions. Mol. Syst. Biol. 2018, 14, e7952. [Google Scholar] [CrossRef]
- Papadimitriou, C.H.; Vishnoi, N.K. On the Computational Complexity of Limit Cycles in Dynamical Systems. arXiv 2015, arXiv:1511.07605. [Google Scholar]
- Liao, C. Rangeland vegetation diversity and transition pathways under indigenous pastoralist management regimes in southern Ethiopia. Agric. Ecosyst. Environ. 2018, 252, 105–113. [Google Scholar] [CrossRef]
- Phillips, J.D.; Van Dyke, C. State-and-transition models in geomorphology. Catena 2017, 153, 168–181. [Google Scholar] [CrossRef]
- Warren, P.H.; Law, R.; Weatherby, A.J. Mapping the Assembly of Protist Communities in Microcosms. Ecology 2003, 84, 1001–1011. [Google Scholar] [CrossRef]
- Abou-Jaoudé, W.; Monteiro, P.T.; Naldi, A.; Grandclaudon, M.; Soumelis, V.; Chaouiya, C.; Thieffry, D. Model Checking to Assess T-Helper Cell Plasticity. Front. Bioeng. Biotechnol. 2015, 2, 86. [Google Scholar] [CrossRef]
- Clarke, E.M.; Henzinger, T.A.; Veith, H.; Bloem, R. (Eds.) Handbook of Model Checking; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Bérenguier, D.; Chaouiya, C.; Monteiro, P.T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L. Dynamical modeling and analysis of large cellular regulatory networks. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23, 025114. [Google Scholar] [CrossRef] [PubMed]
- Diop, O.; Tourniel, L.; Fromion, V. Summarizing complex asynchronous Boolean attractors, application to the analysis of a mammalian cell cycle model. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; 2019; pp. 1677–1682. [Google Scholar] [CrossRef]
- Zhao, Y.; Largouët, C.; Cordier, M.O. EcoMata, un logiciel d’aide à la décision pour améliorer la gestion des écosystèmes. Ingénierie Systèmes d’Inform. 2011, 16, 85–111. [Google Scholar] [CrossRef]
- Largouët, C. Aide à l’Interprétation d’une Séquence d’Images par la Modélisation de l’Évolution du Système Observé: Application à la Reconnaissance de l’Occupation du Sol. Ph.D. Thesis, Université de Rennes, Rennes, France, 2000. [Google Scholar]
- Noble, I.R.; Slatyer, R.O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 1980, 43, 5–21. [Google Scholar] [CrossRef]
- Bodini, A.; Rocchi, M.; Scotti, M. Insights into the ecology of the Black Sea through the qualitative loop analysis of the community structure. Limnol. Oceanogr. 2018, 63, 968–984. [Google Scholar] [CrossRef]
- Veit, W. Model Pluralism. Philos. Soc. Sci. 2020, 50, 91–114. [Google Scholar] [CrossRef]
- de Jong, H. Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. J. Comput. Biol. 2002, 9, 67–103. [Google Scholar] [CrossRef]
- Bartocci, E.; Lió, P. Computational Modeling, Formal Analysis, and Tools for Systems Biology. PLoS Comput. Biol. 2016, 12, e1004591. [Google Scholar] [CrossRef] [PubMed]
- Paulevé, L.; Kolčák, J.; Chatain, T.; Haar, S. Reconciling qualitative, abstract, and scalable modeling of biological networks. Nat. Commun. 2020, 11, 4256. [Google Scholar] [CrossRef] [PubMed]
- Saadatpour, A.; Albert, R. A comparative study of qualitative and quantitative dynamic models of biological regulatory networks. EPJ Nonlinear Biomed. Phys. 2016, 4, 5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosme, M.; Thomas, C.; Gaucherel, C. On the History of Ecosystem Dynamical Modeling: The Rise and Promises of Qualitative Models. Entropy 2023, 25, 1526. https://doi.org/10.3390/e25111526
Cosme M, Thomas C, Gaucherel C. On the History of Ecosystem Dynamical Modeling: The Rise and Promises of Qualitative Models. Entropy. 2023; 25(11):1526. https://doi.org/10.3390/e25111526
Chicago/Turabian StyleCosme, Maximilien, Colin Thomas, and Cédric Gaucherel. 2023. "On the History of Ecosystem Dynamical Modeling: The Rise and Promises of Qualitative Models" Entropy 25, no. 11: 1526. https://doi.org/10.3390/e25111526
APA StyleCosme, M., Thomas, C., & Gaucherel, C. (2023). On the History of Ecosystem Dynamical Modeling: The Rise and Promises of Qualitative Models. Entropy, 25(11), 1526. https://doi.org/10.3390/e25111526