Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention
Abstract
:1. Introduction
- We design a super-resolution generative adversarial network with attention and residuals that are suitable for multiple super-resolution tasks.
- We employ an enhanced attention mechanism and make the network pay more attention to the reconstruction of image details and texture information.
- We use the cosine annealing algorithm to improve the network training process, speed up the training process, and effectively improve the network’s performance.
- We build a terahertz degradation model and image database, and apply the network to terahertz tomography image super-resolution reconstruction.
2. Related Work
2.1. Deep CNN Super-Resolution Based on Residual Block
2.2. Image Super-Resolution Based on Attention Mechanism
3. Methodology
3.1. Generation Network
3.2. Enhanced Attention
3.3. Discriminator and Loss Function
4. Experiments
4.1. Discriminator and Loss Function
4.2. Training Details
4.3. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Valušis, G.; Lisauskas, A.; Yuan, H.; Knap, W.; Roskos, H.G. Roadmap of Terahertz Imaging 2021. Sensors 2021, 21, 4092. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Ung, B.S.; Parrott, E.P.; Wallace, V.P.; Pickwell-MacPherson, E. In vivo terahertz reflection imaging of human scars during and after the healing process. J. Biophotonics 2017, 10, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Joseph, C.S.; Patel, R.; Neel, V.A.; Giles, R.H.; Yaroslavsky, A.N. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging. J. Biophotonics 2014, 7, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Ahi, K.; Shahbazmohamadi, S.; Asadizanjani, N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers Eng. 2018, 104, 274–284. [Google Scholar] [CrossRef]
- Friederich, F.; May, K.H.; Baccouche, B.; Matheis, C.; Bauer, M.; Jonuscheit, J.; Moor, M.; Denman, D.; Bramble, J.; Savage, N. Terahertz Radome Inspection. Photonics 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Quast, H.; Keil, A.; Löffler, T. Investigation of foam and glass fiber structures used in aerospace applications by all-electronic 3D Terahertz imaging. In Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy, 5–10 September 2010; pp. 1–2. [Google Scholar]
- Guillet, J.P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. Review of terahertz tomography techniques. J. Infrared Millim. Terahertz Waves 2014, 35, 382–411. [Google Scholar] [CrossRef] [Green Version]
- Bitzer, A.; Ortner, A.; Walther, M. Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas. Appl. Opt. 2010, 49, E1–E6. [Google Scholar] [CrossRef] [Green Version]
- Guillet, J.P.; Chusseau, L.; Adam, R.; Grosjean, T.; Penarier, A.; Baida, F.; Charraut, D. Continuous-wave scanning terahertz near-field microscope. Microw. Opt. Technol. Lett. 2011, 53, 580–582. [Google Scholar] [CrossRef]
- Ruan, D.; Li, Z.; Du, L.; Zhou, X.; Zhu, L.; Lin, C.; Yang, M.; Chen, G.; Yuan, W.; Liang, G. Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array. Appl. Opt. 2018, 57, 7905–7909. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Hellicar, A.; Guo, Y.J. Super-Resolution Reconstruction of Terahertz Images. In Proceedings of the SPIE Defense and Security Symposium, Orlando, FL, USA, 16–20 March 2008. [Google Scholar]
- Ding, S.-H.; Li, Q.; Yao, R.; Wang, Q. High-resolution terahertz reflective imaging and image restoration. Appl. Opt. 2010, 49, 6834–6839. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 14 August 2014; pp. 184–199. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3147–3155. [Google Scholar]
- Wang, Z.; Chen, J.; Hoi, S.C.; Intelligence, M. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. 2020, 43, 3365–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Hu, W.; Zhang, X.; Xu, Z.; Ni, J.; Ligthart, L.P. Adaptive terahertz image super-resolution with adjustable convolutional neural network. Opt. Express 2020, 28, 22200–22217. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Wang, T.; You, C.; Yang, Z.; Wang, K.; Liu, J. Terahertz image super-resolution based on a deep convolutional neural network. Appl. Opt. 2019, 58, 2731–2735. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, F.; Wang, J. Terahertz image super-resolution based on a complex convolutional neural network. Opt. Lett. 2021, 46, 3123–3126. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zeng, Y.; Yang, Q.; Wang, H.; Deng, B. Fast and high-quality 3-D terahertz super-resolution imaging using lightweight SR-CNN. Remote Sens. 2021, 13, 3800. [Google Scholar] [CrossRef]
- Su, W.-T.; Hung, Y.-C.; Yu, P.-J.; Yang, S.-H.; Lin, C.-W. Seeing Through a Black Box: Toward High-Quality Terahertz Imaging via Subspace-and-Attention Guided Restoration. In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; pp. 453–469. [Google Scholar]
- Yang, X.; Zhang, D.; Wang, Z.; Zhang, Y.; Wu, J.; Wu, B.; Wu, X. Super-resolution reconstruction of terahertz images based on a deep-learning network with a residual channel attention mechanism. Appl. Opt. 2022, 61, 3363–3370. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wang, X.; Xie, L.; Dong, C.; Shan, Y. Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In Proceedings of the International Conference on Computer Vision(ICCV), Montreal, BC, Canada, 10–17 October 2021; pp. 1905–1914. [Google Scholar]
- Brauwers, G.; Frasincar, F.; Engineering, D. A general survey on attention mechanisms in deep learning. IEEE Trans. Knowl. 2021. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(ICCV), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer vision (ECCV), Glasgow, UK, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 13713–13722. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 126–135. [Google Scholar]
- Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.-H.; Zhang, L. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 114–125. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the British Machine Vision Conference, Surrey, UK, 3–7 September 2012. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010; pp. 711–730. [Google Scholar]
- Zou, Y.; Ge, Q.; Han, Y.; Shen, L.; Zhan, C. Stripe noise of THz image prcessing based on frequency filtering. Comput. Eng. Appl. 2009, 45, 241–243. [Google Scholar]
- Hou, Z.; An, H.; He, L.; Li, E.; Lai, D. Super-Resolution Reconstruction Algorithm for Terahertz Images. In Proceedings of the 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML), Chengdu, China, 15–17 July 2022; pp. 180–185. [Google Scholar]
Method | Scale | Params | Set5 | Set14 |
---|---|---|---|---|
(K) | PSNR/SSIM/NIQE | PSNR/SSIM/NIQE | ||
Bicubic | ×2 | 0 | 33.52/0.9230/6.2358 | 30.21/0.8683/5.5834 |
RDB | ×2 | 27,715 | 36.72/0.9435/6.7594 | 32.69/0.8988/5.8812 |
SERDB | ×2 | 27,935 | 36.89/0.9483/6.7312 | 33.02/0.9075/5.8619 |
CBAMRDB | ×2 | 28,150 | 36.93/0.9501/6.7248 | 33.08/0.9083/5.8405 |
CARDB | ×2 | 28,375 | 37.01/0.9510/6.7101 | 33.23/0.9108/5.8322 |
EARDB | ×2 | 30,470 | 37.14/0.9527/6.7262 | 33.45/0.9113/5.8326 |
EARDB-GAN | ×2 | 30,470 | 36.95/0.9491/6.2162 | 33.17/0.9091/5.5138 |
Bicubic | ×4 | 0 | 28.41/0.8091/7.2812 | 25.97/0.7023/6.4523 |
RDB | ×4 | 27,695 | 30.61/0.8813/7.4811 | 27.53/0.7729/6.6979 |
SERDB | ×4 | 27,915 | 30.85/0.8852/7.4631 | 27.75/0.7782/6.6810 |
CBAMRDB | ×4 | 28,130 | 30.92/0.8891/7.4566 | 27.91/0.7829/6.6731 |
CARDB | ×4 | 28,355 | 31.11/0.8908/7.4392 | 28.03/0.7853/6.6607 |
EARDB | ×4 | 30,450 | 31.30/0.8913/7.4401 | 28.20/0.7890/6.6725 |
EARDB-GAN | ×4 | 30,450 | 31.03/0.8901/7.2293 | 27.86/0.7851/6.4281 |
Method | Scale | Params | Set5 | Set14 |
---|---|---|---|---|
(K) | PSNR/SSIM/NIQE | PSNR/SSIM/NIQE | ||
SRGAN | ×2 | 110,870 | 36.83/0.9428/6.2257 | 32.81/0.9041/5.5174 |
ESRGAN | ×2 | 130,950 | 36.91/0.9483/6.2203 | 32.95/0.9067/5.5153 |
EARDB-GAN | ×2 | 30,470 | 36.95/0.9491/6.2162 | 33.17/0.9091/5.5138 |
SRGAN | ×4 | 110,830 | 30.95/0.8879/7.2317 | 27.79/0.7831/6.4297 |
ESRGAN | ×4 | 130,910 | 31.01/0.8892/7.2303 | 27.86/0.7845/6.4282 |
EARDB-GAN | ×4 | 30,450 | 31.03/0.8901/7.2293 | 27.86/0.7851/6.4281 |
Network | EARDBx4 7 Blocks | EARDBx4 8 Blocks | EARDBx4 9 Blocks | EARDBx4 10 Blocks | EARDBx4 11 Blocks |
---|---|---|---|---|---|
Params | 23,752 K | 27,101 K | 30,450 K | 33,799 K | 37,148 K |
PSNR/SSIM | 28.13/0.7881 | 28.17/0.7887 | 28.20/0.7890 | 28.19/0.7890 | 28.14/0.7883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Cha, X.; An, H.; Zhang, A.; Lai, D. Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention. Entropy 2023, 25, 440. https://doi.org/10.3390/e25030440
Hou Z, Cha X, An H, Zhang A, Lai D. Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention. Entropy. 2023; 25(3):440. https://doi.org/10.3390/e25030440
Chicago/Turabian StyleHou, Zhongwei, Xingzeng Cha, Hongyu An, Aiyang Zhang, and Dakun Lai. 2023. "Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention" Entropy 25, no. 3: 440. https://doi.org/10.3390/e25030440
APA StyleHou, Z., Cha, X., An, H., Zhang, A., & Lai, D. (2023). Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention. Entropy, 25(3), 440. https://doi.org/10.3390/e25030440