A Quantum–Classical Model of Brain Dynamics
Abstract
:1. Introduction
2. The Bipartite Structure of Psychology as the Root for Quantum–Classical Models of the Brain
2.1. General Semantics
2.2. Pauli and Jung’s Synchronicity
2.3. The Bi-Logical Structure of Psychology
3. Schrödinger’s ‘Order from Order’ and Jordan’s Quantum Amplification
4. Electromagnetic Fields in the Brain
5. Penrose and Hameroff’s Orch OR
6. The Dissipative Quantum Model of Brain
7. The Quantum–Classical Model of Brain
Constant Temperature Quantum–Classical Dynamics
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACS | alternating current stimulation |
CaMKII | calcium-calmodulin kinase II |
DOF | degrees of freedom |
DQMB | dissipative quantum model of brain |
EMF | electromagnetic field |
GS | general semantics |
MAPs | microtubule-associated proteins |
NHC | Nosé–Hoover chain |
Orch OR | orchestrated objective reduction |
QC | quantum–classical |
QFT | quantum field theory |
QFTMB | quantum field theory model of brain |
SSB | spontaneous symmetry breaking |
tDCS | transcranial direct-current stimulation |
References
- von Bartheld, C.S.; Bahney, J.; Herculano-Houzel, S. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting. J. Comp. Neurol. 2016, 524, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIlwain, H.; Bachelard, H.S. Biochemistry and the Central Nervous System; Churchill Livingstone: Edinburgh, UK, 1985. [Google Scholar]
- McFadden, J. Integrating information in the brain’s EM field: The cemi field theory of consciousness. Neurosci. Conscious. 2020, 6, niaa016. [Google Scholar] [CrossRef] [PubMed]
- McFadden, J. Synchronous Firing and Its Influence on the Brain’s Electromagnetic Field. J. Conscious. Stud. 2002, 9, 23. [Google Scholar]
- McFadden, J. The CEMI Field Theory: Closing the loop. J. Conscious. Stud. 2013, 20, 153. [Google Scholar]
- Hales, C.G.; Pockett, S. The relationship between local field potentials (LFPs) and the electromagnetic fields that give rise to them. Front. Neurosci. 2014, 8, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Pockett, S.; Brennan, B.J.; Bold, G.E.J.; Holmes, M.D. A possible physiological basis for the discontinuity of consciousness. Front. Psychol. 2011, 2, 377. [Google Scholar] [CrossRef] [Green Version]
- Pockett, S.; Holmes, M.D. Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Conscious. Cogn. 2009, 18, 1049. [Google Scholar] [CrossRef]
- Liboff, A.R. Magnetic correlates in electromagnetic consciousness. Electromagn. Biol. Med. 2016, 35, 228. [Google Scholar] [CrossRef] [PubMed]
- Liboff, A.R. A human source for ELF magnetic perturbations. Electromagn. Biol. Med. 2016, 35, 337. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, F.; McCormick, D.A. Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron 2010, 67, 129. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. On Gravity’s Role in Quantum State Reduction. Gen. Relativ. Gravit. 1996, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Found. Phys. 2014, 44, 557. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. On the Gravitization of Quantum Mechanics 2: Conformal Cyclic Cosmology. Found. Phys. 2014, 44, 873. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. The Emperor’s New Mind; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Penrose, R. Shadows of the Mind; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Hameroff, S.; Penrose, R. Consciousness events as orchestrated space-time selections. J. Conscious. Stud. 1996, 2, 36. [Google Scholar]
- Hameroff, S.; Penrose, R. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Math. Comput. Simul. 1996, 40, 453. [Google Scholar] [CrossRef]
- Hameroff, S.; Penrose, R. Consciousness in the universe. A review of the ‘Orch OR’ theory. Phys. Life Rev. 2014, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Hameroff, S.; Nip, A.; Porter, M.; Tuszynski, J. Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems 2002, 64, 149. [Google Scholar] [CrossRef]
- Craddock, T.J.A.; Hameroff, S.R.; Ayoub, A.T.; Klobukowski, M.; Tuszynski, J.A. Anestetics Act in Quantum Channels in Brain Microtubules to Prevent Consciousness. Curr. Top. Med. Chem. 2015, 15, 523. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.P.A. Quantum cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys. 2015, 362, 593. [Google Scholar] [CrossRef] [Green Version]
- Weingarten, C.P.; Doraiswamy, P.M.; Fisher, M.P.A. A new spin on neural processing: Quantum cognition. Front. Hum. Neurosci. 2016, 10, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettenberg, A.; Ayala, K.; Krug, J.T.; Collins, L.; Mayes, M.S.; Fisher, M.P.A. Differential effects of lithium isotopes in a ketamine-induced hyperactivity model of mania. J. Pharmacol. Biochem. Behav. 2020, 190, 172875. [Google Scholar] [CrossRef] [PubMed]
- Kerskens, C.M.; Pérez, D.L. Experimental indications of non-classical brain functions. J. Phys. Commun. 2022, 6, 105001. [Google Scholar] [CrossRef]
- Hameroff, S.R. The Brain is Both Neurocomputer and Quantum Computer. Cogn. Sci. 2007, 31, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitiello, G. Dissipation and memory capacity in the quantum brain model. Int. J. Mod. Phys. 1995, 9, 973. [Google Scholar] [CrossRef]
- Pessa, E.; Vitiello, G. Quantum dissipation and Neural Net Dynamics. Bioelectrochemistry Bioenerg. 1999, 48, 339–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfinito, E.; Vitiello, G. The dissipative quantum model of brain: How does memory localize in correlated neuronal domain. Inf. Sci. 2000, 128, 217–229. [Google Scholar] [CrossRef]
- Freeman, W.J.; Vitiello, G. The Dissipative Quantum Model of Brain and Laboratory Observations. In Physics of Emergence and Organization; World Scientific: Singapore, 2008; pp. 233–251. [Google Scholar]
- Freeman, W.J.; Vitiello, G. Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys. Life Rev. 2006, 3, 93. [Google Scholar] [CrossRef] [Green Version]
- Freeman, W.J.; Vitiello, G. Dissipative neurodynamics in perception forms cortical patterns that are stabilized by vortices. J. Phys. Conf. Ser. 2009, 174, 012011. [Google Scholar] [CrossRef] [Green Version]
- Vitiello, G. Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics. J. Phys. Conf. Ser. 2012, 380, 012021. [Google Scholar] [CrossRef]
- Vitiello, G. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning. Curr. Opin. Neurobiol. 2014, 31, 7. [Google Scholar] [CrossRef]
- Sabbadini, S.A.; Vitiello, G. Entanglement and Phase-Mediated Correlations in Quantum Field Theory. Application to Brain-Mind States. Appl. Sci. 2019, 9, 3203. [Google Scholar] [CrossRef] [Green Version]
- Korzybiski, A. Science and Sanity. An Introduction to Non-Aristotelian Systems and General Semantics; Institute of General Semantics: Fort Worth, TX, USA, 2005. [Google Scholar]
- Kodish, S.B.; Kodish, B.I. Drive Yourself Sane: Using the Uncommon Sense of General Semantics; Extensional Publishing: Pasadena, CA, USA, 2011. [Google Scholar]
- Korzybski, A. Alfred Korzybski: Collected Writings 1920–1950; Institute of General Semantics: Englewood, CO, USA, 1990. [Google Scholar]
- Christopher, P. They’re Stealing Our General Semantics. ETC 1998, 55, 217. [Google Scholar]
- Meier, C.A. (Ed.) Atom and the Archetype: The Pauli/Jung Letters 1932–1958; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Atmanspacher, H.; Fuchs, C. (Eds.) The Pauli-Jung Conjecture; Imprint Academics: Exter, UK, 2014. [Google Scholar]
- Lindorss, D. Pauli and Jung; Quest Books: Wheaton, IL, USA, 2009. [Google Scholar]
- Jung, C.G. Synchronicity: An Acausal Connecting Principle; Bollingen Foundation: Bollingen, Switzerland, 1993. [Google Scholar]
- Jung, C.G.; Pauli, W.E. The Interpretation of Nature and Psyche; Pantheon Books: New York, NY, USA, 1955. [Google Scholar]
- Blanco, I.M. The Unconscious as Infinite Sets: An Essay in Bi-Logic; Karnac Books: London, UK, 1980. [Google Scholar]
- Blanco, I.M. Thinking, Feeling, and Being. Clinical Reflections on the Fundamental Antinomy of Human Beings and World; Routlege: London, UK, 1988. [Google Scholar]
- Rayner, E. Unconscious Logic. An Introduction to Matte Blanco’s Bi-Logic and Its Uses; Routledge: London, UK, 1995. [Google Scholar]
- Lombardi, R. Formless Infinity: Clinical Explorations of Matte Blanco and Bion; Routledge: London, UK, 2015. [Google Scholar]
- Bear, M.; Connors, B.C.; Paradiso, M.A. Neuroscience: Exploring the Brain, Enhanced Edition; Jones & Bartlett: Burlington, VT, USA, 2020. [Google Scholar]
- Translational Neuroscience. Applications in Psychiatry, Neurology, and Neurodevelopmental Disorders; Barrett, J.E., Coyle, J.T., Williams, M., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Translational Neuroscience. A Guide to a Successful Program; Garcia-Rill, E., Ed.; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- Tuszynski, M.H. (Ed.) Translational Neuroscience: Fundamental Approaches for Neurological Disorders; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Conn, P.M. (Ed.) Conn’s Translational Neuroscience; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gargiulo, P.Á.; Mesones-Arroyo, H.L. (Eds.) Psychiatry and Neuroscience Update: A Translational Approach, II; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Altamura, A.C.; Brambilla, P. (Eds.) Clinical Cases in Psychiatry: Integrating Translational Neuroscience Approaches; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Gargiulo, P.Á.; Mesones Arroyo, H.L. (Eds.) Psychiatry and Neuroscience Update: From Translational Research to a Humanistic Approach—III; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Tanaka, S.; Umegaki, T.; Nishiyama, A.; Kitoh-Nishioka, H. Dynamical Free Energy Based Model for Quantum Decision Making. Phys. A 2022, 605, 127979. [Google Scholar] [CrossRef]
- Khrennikov, A. Quantum-like modeling of cognition. Front. Phys. 2015, 3, 77. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Quantum-like modeling: Cognition, decision making, and rationality. Mind Soc. 2020, 19, 307. [Google Scholar] [CrossRef]
- Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finances; Springer: Berlin, Germany, 2010. [Google Scholar]
- Bond, R.L.; He, Y.-H.; Ormerod, T.C. A quantum framework for likelihood ratios. Int. J. Quantum Inf. 2018, 16, 1850002. [Google Scholar] [CrossRef] [Green Version]
- Basieva, I.; Pandey, V.; Khrennikova, P. More Causes Less Effect: Destructive Interference in Decision Making. Entropy 2022, 24, 725. [Google Scholar] [CrossRef]
- Busemeyer, J.R.; Pothos, E.; Franco, R.; Trueblood, J.S. A quantum theoretical explanation for probability judgment ‘errors’. Psychol. Rev. 2011, 118, 193. [Google Scholar] [CrossRef] [Green Version]
- Van den Noort, M.; Lim, S.; Bosch, P. On the need to unify neuroscience and physics. Neuroimmunol. Neuroinflammation 2016, 3, 271. [Google Scholar] [CrossRef] [Green Version]
- Asano, M.; Basieva, I.; Khrennikov, P.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology. Found. Phys. 2015, 45, 1362. [Google Scholar] [CrossRef] [Green Version]
- Silin, V.P. The Kinetics of Paramagnetic Phenomena. Zh. Teor. Eksp. Fiz. 1956, 30, 421. [Google Scholar]
- Rukhazade, A.A.; Silin, V.P. On the magnetic susceptibility of a relativistic electron gas. Soviet Phys. JETP 1960, 11, 463. [Google Scholar]
- Balescu, R.A. Covariant Formulation of Relativistic Quantum Statistical Mechanics, I. Phase Space Description of a Relativistic Quantum Plasma. Acta Phys. Aust. 1968, 28, 336. [Google Scholar]
- Zhang, W.Y.; Balescu, R. Statistical Mechanics of a spin-polarized plasma. J. Plasma Phys. 1988, 40, 199. [Google Scholar] [CrossRef]
- Balescu, R.; Zhang, W.Y. Kinetic equation, spin hydrodynamics and collisional depolarization rate in a spin polarized plasma. J. Plasma Phys. 1988, 40, 215. [Google Scholar] [CrossRef]
- Aleksandrov, I.V. The Statistical Dynamics of a System Consisting of a Classical and a Quantum Subsystem. Z. Naturforsch. A 1981, 36, 902. [Google Scholar] [CrossRef]
- Gerasimenko, V.I. Dynamical equations of quantum-classical systems. Theor. Math. Phys. 1982, 50, 49. [Google Scholar] [CrossRef]
- Boucher, W.; Traschen, J. Semiclassical physics and quantum fluctuations. Phys. Rev. D 1988, 37, 3522. [Google Scholar] [CrossRef]
- Petrina, D.Y.; Gerasimenko, V.I.; Enolskii, V.Z. Equations of motion of one class of quantum-classical systems. Sov. Phys. Dokl. 1990, 35, 925. [Google Scholar]
- Prezhdo, O.V.; Kisil, V.V. Mixing quantum and classical mechanics. Phys. Rev. A 1997, 56, 162. [Google Scholar] [CrossRef] [Green Version]
- Kapral, R.; Ciccotti, G. Mixed quantum-classical dynamics. J. Chem. Phys. 1999, 110, 8919. [Google Scholar] [CrossRef]
- Nielsen, S.; Kapral, R.; Ciccotti, G. Statistical mechanics of quantum-classical systems. J. Chem. Phys. 2001, 115, 5805. [Google Scholar] [CrossRef]
- Sergi, A. Non-Hamiltonian Commutators in Quantum Mechanics. Phys. Rev. E 2005, 72, 066125. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A. Deterministic constant-temperature dynamics for dissipative quantum systems. J. Phys. A 2007, 40, F347. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Hanna, G.; Grimaudo, R.; Messina, A. Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths. Symmetry 2018, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Osborn, T.A.; Kondratèva, M.F.; Tabisz, G.C.; McQuarrie, B.R. Mixed Weyl symbol calculus and spectral line shape theory. J. Phys. A Math. Gen. 1999, 32, 4149. [Google Scholar] [CrossRef]
- Martens, C.C.; Fang, J.Y. Semiclassical-Limit Molecular Dynamics on Multiple Electronic Surfaces. J. Chem. Phys. 1996, 106, 4918. [Google Scholar] [CrossRef]
- Donoso, A.; Martens, C.C. Simulation of Coherent Nonadiabatic Dynamics Using Classical Trajectories. J. Phys. Chem. A 1998, 102, 4291. [Google Scholar] [CrossRef]
- Sergi, A.; Kapral, R. Quantum-Classical Limit of Quantum Correlation Functions. J. Chem. Phys. 2004, 121, 7565. [Google Scholar] [CrossRef] [Green Version]
- Uken, D.A.; Sergi, A. Quantum dynamics of a plasmonic metamolecule with a time-dependent driving. Theor. Chem. Acc. 2015, 134, 141. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Sinayskiy, I.; Petruccione, F. Numerical and Analytical Approach to the Quantum Dynamics of Two Coupled Spins in Bosonic Baths. Phys. Rev. A 2009, 80, 012108. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Kapral, R. Quantum-Classical Dynamics of Nonadiabatic Chemical Reactions. J. Chem. Phys. 2003, 118, 8566. [Google Scholar] [CrossRef]
- Leggett, J.A.; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two state system. Rev. Mod. Phys. 1987, 59, 1. [Google Scholar] [CrossRef]
- Bakemeier, L.; Alvermann, A.; Fehske, H. Quantum phase transition in the Dicke model with critical and noncritical entanglement. Phys. Rev. A 2012, 85, 043821. [Google Scholar] [CrossRef] [Green Version]
- Hwang, M.-J.; Puebla, R.; Plenio, M.B. Quantum Phase Transition and Universal Dynamics in the Rabi Model. Phys. Rev. Lett. 2015, 115, 180404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finney, G.A.; Gea-Banacloche, J. Quasiclassical approximation for the spin-boson Hamiltonian with counterrotating terms. Phys. Rev. A 1994, 50, 2040. [Google Scholar] [CrossRef] [PubMed]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 92, 2635. [Google Scholar] [CrossRef]
- Sergi, A.; Ferrario, M. Non-Hamiltonian Equations of Motion with a Conserved Energy. Phys. Rev. E 2001, 64, 056125. [Google Scholar] [CrossRef]
- Sergi, A. Non-Hamiltonian Equilibrium Statistical Mechanics. Phys. Rev. E 2003, 67, 021101. [Google Scholar] [CrossRef]
- Riddle, J.; McFerren, A.; Frohlich, F. Causal role of cross-frequency coupling in distinct components of cognitive control. Prog. Neurobiol. 2021, 202, 102033. [Google Scholar] [CrossRef]
- Riddle, J.; Scimeca, J.M.; Cellier, D.; Dhanani, S.; D’Esposito, M. Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory. Curr. Biol. 2020, 30, 1748. [Google Scholar] [CrossRef]
- Abubaker, M.; Al Qasem, W.; Kvas̆n̆ák, E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Front. Psychol. 2021, 12, 756661. [Google Scholar] [CrossRef] [PubMed]
- Croce, P.; Zappasodi, F.; Capotosto, P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Sci. Rep. 2018, 8, 1287. [Google Scholar] [CrossRef] [Green Version]
- Caruana, F.; Gerbella, M.; Avanzini, P.; Gozzo, F.; Pelliccia, V.; Mai, R.; Abdollahi, R.O.; Cardinale, F.; Sartori, I.; Lo Russo, G.; et al. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain 2018, 141, 3035. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633. [Google Scholar] [CrossRef]
- Stagg, C.J.; Nitsche, M.A. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist 2011, 17, 37. [Google Scholar] [CrossRef]
- Papazova, I.; Strube, W.; Wienert, A.; Henning, B.; Schwippel, T.; Fallgatter, A.J.; Padberg, F.; Falkai, P.; Plewnia, C.; Hasan, A. Effects of 1 mA and 2 mA transcranial direct current stimulation on working memory performance in healthy participants. Conscious. Cogn. 2020, 83, 102959. [Google Scholar] [CrossRef]
- Yavari, F.; Jamil, A.; Samani, M.M.; Vidor, L.P.; Nitsche, M.A. Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction. Neurosci. Biobehav. Rev. 2018, 85, 81–92. [Google Scholar] [CrossRef]
- Anastassiou, C.A.; Perin, R.; Markram, H.; Koch, C. Ephaptic coupling of cortical neurons. Nat. Neurosci. 2011, 14, 217. [Google Scholar] [CrossRef]
- Martinez-Banaclocha, M. Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience 2018, 370, 37. [Google Scholar] [CrossRef]
- Pinotsis, D.A.; Miller, E.K. Beyond dimension reduction: Stable electric fields emerge from and allow representational drift. NeuroImage 2022, 253, 119058. [Google Scholar] [CrossRef]
- Vicario, C.M.; Nitsche, M.A.; Hoysted, I.; Yavari, F.; Avenanti, A.; Salehinejad, M.A.; Felmingham, K.L. Anodal transcranial direct current stimulation over the ventromedial prefrontal cortex enhances fear extinction in healthy humans: A single blind sham-controlled study. Brain Stimul. 2020, 13, 489–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ney, L.J.; Vicario, C.M.; Nitsche, M.A.; Felmingham, K.L. Timing matters: Transcranial direct current stimulation after extinction learning impairs subsequent fear extinction retention. Neurobiol Learn Mem. 2021, 177, 107356. [Google Scholar] [CrossRef]
- Markovir̀c, V.; Vicario, C.M.; Yavari, F.; Salehinejad, M.A.; Nitsche, M.A. A Systematic Review on the Effect of Transcranial Direct Current and Magnetic Stimulation on Fear Memory and Extinction. Front Hum Neurosci. 2021, 22, 655947. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.M.; Salehinejad, M.A.; Mosayebi-Samani, M.; Maezawa, H.; Avenanti, A.; Nitsche, M.A. Transcranial direct current stimulation over the tongue motor cortex reduces appetite in healthy humans. Brain Stimul. 2020, 13, 1121–1123. [Google Scholar] [CrossRef]
- Nunez, P.L.; Srinivasan, R. The Neurophysics of EEG; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Stapp, H.P. The Copenhagen Interpretation. Am. J. Phys. 1972, 40, 1098. [Google Scholar] [CrossRef] [Green Version]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, UK, 1983. [Google Scholar]
- Schrödinger, E. What is life? With Mind And Matter, and Autobiographical Sketches; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Watson, J.D.; Crick, F.H.C. A structure for deoxyribose nucleic acid. Nature 1953, 171, 737. [Google Scholar] [CrossRef] [PubMed]
- Pray, L. Discovery of DNA structure and function: Watson and Crick. Nat. Educ. 2008, 1, 100. [Google Scholar]
- Beyler, R. From Positivism to Organicism: Pascual Jordan’s Interpretations of Modem Physics in Cultural Contex. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1994. [Google Scholar]
- Beyler, R. Targeting the Organism. The Scientific and Cultural Context of Pascual Jordan’s Quantum Biology, 1932–1947. Isis 1996, 87, 248. [Google Scholar] [CrossRef]
- Al-Khalili, J.; McFadden, J. Life on the Edge: The Coming of Age of Quantum Biology; Bantam Press: London, UK, 2014. [Google Scholar]
- McFadden, J. Quantum Evolution; Norton: New York, NY, USA, 2002. [Google Scholar]
- Joos, E.; Zeh, H.D.; Kiefer, C.; Giulini, D.; Kupsch, J.; Stamatescu, I.-O. Decoherence and the Appearance of a Classical World in Quantum Theory; Springer: Berlin, Germanny, 2003. [Google Scholar]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715. [Google Scholar] [CrossRef] [Green Version]
- Tegmark, M. Importance of quantum decoherence in brain processes. Phys. Rev. E 2000, 61, 4194. [Google Scholar] [CrossRef] [Green Version]
- Chuang, I.; Nielsen, M. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Jaeger, G. Entanglement, Information, and the Interpretation of Quantum Mechanics; Springer: Berlin, Germany, 2009. [Google Scholar]
- Lloyd, L. Quantum search without entanglement. Phys. Rev. A 1999, 61, 010301(R). [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.A. Sophisticated Quantum Search Without Entanglement. Phys. Rev. Lett. 2000, 85, 2014. [Google Scholar] [CrossRef] [Green Version]
- Biham, E.; Brassard, G.; Kenigsberg, D.; Mor, T. Quantum computing without entanglement. Theor. Comput. Sci. 2004, 320, 15. [Google Scholar] [CrossRef]
- Lanyon, B.P.; Barbieri, M.; Almeida, M.P.; White, A.G. Experimental Quantum Computing without Entanglement. Phys. Rev. Lett. 2008, 101, 200501. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 807. [Google Scholar] [CrossRef]
- Friston, K. A free energy principle for biological systems. Entropy 2012, 14, 2100. [Google Scholar]
- Sánchez-Can˜izares, J. The free energy principle: Good science and questionable philosophy in a grand unifying theory. Entropy 2021, 23, 238. [Google Scholar]
- Ellis, A.; Harper, R.A. A New Guide to Rational Living; Wilshire Books: North Hollywood, CA, USA, 1977. [Google Scholar]
- Wysong, J. Alfred Korzybski and Gestalt Therapy. In The Gestalt Journal; 1998; Available online: www.gestalt.org/alfred.htm (accessed on 9 January 2023).
- Barlow, A.R. The Derivation of a Psychological Theory: Gestalt Therapy. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 1983. [Google Scholar]
- Minuchin, S. Families and Family Therapy; Harvard University Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Bowen, M. Family Therapy in Clinical Practice; Jason Aronson: New York, NY, USA, 1978. [Google Scholar]
- Ballentine, L.E. Quantum Mechanics; World Scientific: Singapore, 2001. [Google Scholar]
- Weinberg, S. Lectures on Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Jung, C.G. The Archetypes and the Collective Unconscious; Routledge: New York, NY, USA, 1991. [Google Scholar]
- Percival, R.S. Is Jung’s Theory of Archetypes Compatible with Neo-Darwinism and Sociobiology? J. Soc. Evol. Syst. 1993, 16, 459. [Google Scholar] [CrossRef] [Green Version]
- Zee, A. Quantum Field Theory in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Mandl, F.; Shaw, G. Quantum Field Theory; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: New York, USA, 1985. [Google Scholar]
- Blundell, S.J.; Blundell, K.M. Concepts in Thermal Physics; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Ohya, M.; Petz, M. Quantum Entropy and Its Use; Springer: Berlin, Germany, 1993. [Google Scholar]
- Heusler, S.; Dür, W.; Ubben, M.S.; Hartmann, A. Aspects of entropy in classical and in quantum physics. J. Phys. A Math. Theor. 2022, 55, 404006. [Google Scholar] [CrossRef]
- Portmann, O.; Glzer, A.; Saratz, N.; Billoni, O.V.; Pescia, D.; Vindign, A. Scaling hypothesis for modulated systems. Phys. Rev. B 2010, 82, 184409. [Google Scholar] [CrossRef] [Green Version]
- Borycki, D.; Marćkowiak, J. Reentrant behavior of superconducting alloys. Supercond. Sci. Technol. 2011, 24, 035007. [Google Scholar] [CrossRef]
- Avraham, N.; Khaykovich, B.; Myasoedov, Y.; Rappaport, M.; Shtrikman, H.; Feldman, D.E.; Tamegai, T.; Kes, P.H.; Li, M.; Konczykowski, M.; et al. ‘Inverse’ melting of a vortex lattice. Nature 2001, 411, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.J.; He, Y.W.; Zhao, Z.G.; Liu, M.; Yang, Y.H. Inverse Melting of Vortex Lattice in Layered Superconductors. Int. J. Mod. Phys. 2005, 19, 451. [Google Scholar] [CrossRef]
- Mukamel, S. Trees to trap photons. Nature 1997, 388, 425–427. [Google Scholar] [CrossRef]
- Jiang, D.-L.; Aida, T. Photoisomerization in dendrimers by harvesting of low-energy photons. Nature 1997, 388, 454–456. [Google Scholar] [CrossRef]
- Sergi, A.; Grüning, M.; Ferrario, M.; Buda, F. A Density Functional Study of the PYP Chromophore. J. Phys. Chem. 2001, 105, 4386. [Google Scholar] [CrossRef]
- Zeng, B.; Chen, X.; Zhou, D.-L.; Wen, X.-G. Quantum Information Meets Quantum Matter. From Quantum Entanglement to Topological Phases of Many-Body Systems; Springer: New York, NY, USA, 2019. [Google Scholar]
- Deco, G.; Cruzata, J.; Cabral, J.; Tagliazucchi, E.; Laufs, H.; Logothetis, N.K.; Kringelbach, M.L. Awakening: Predicting external stimulation to force transitions between different brain states. Proc. Natl. Acad. Sci. USA 2019, 116, 18088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115. [Google Scholar] [CrossRef]
- Caianiello, E.R. Outline of a theory of thought-processes and thinking machines. J. Theor. Biol. 1961, 1, 204. [Google Scholar] [CrossRef]
- Hodgikin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500. [Google Scholar] [CrossRef]
- Catterall, W.A.; Indira, M.R.; Robinson, H.P.C.; Sejnowski, T.J.; Paulsen, O. The Hodgkin-Huxley Heritage: From Channels to Circuits. J. Neurosci. 2012, 32, 1406. [Google Scholar] [CrossRef] [Green Version]
- Meunier, C.; Segev, I. Playing the Devil’s advocate: Is the Hodgkin–Huxley model useful? Trends Neurosci. 2002, 25, 558. [Google Scholar] [CrossRef] [PubMed]
- Sadegh Zadeh, S.A.; Kambhampati, C. All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model. Int. J. Math. Comput. Sci. 2017, 11, 453. [Google Scholar]
- Deng, B. Alternative Models to Hodgkin-Huxley Equations. Bull. Math. Biol. 2017, 79, 1390. [Google Scholar] [CrossRef]
- Schmitt, F.O. Molecules and Memory. New Scientist 1966, 23, 643. [Google Scholar]
- Arbib, M. Brain Machines and Mathematics; McGraw-Hill: London, UK, 1964. [Google Scholar]
- Agnati, L.F.; Marcoli, M.; Maura, G.; Woods, A.; Guidolin, D. The brain as a “hyper-network”: The key role of neural networkss as main producers of the integrated brain actions especially via the “broadcasted” neuroconnectomics. J. Neural. Transm. 2018, 125, 883. [Google Scholar] [CrossRef]
- Santamaria, F.; Bower, J.M. Hodgkin–Huxley Models. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Amsterdam, The Netherland, 2009; pp. 1173–1180. [Google Scholar] [CrossRef]
- Strassberg, A.F.; DeFelice, L.J. Limitations of the Hodgkin-Huxley Formalism: Effects of Single Channel Kinetics on Transmembrane Voltage Dynamics. Neural Comput. 1993, 5, 843. [Google Scholar] [CrossRef]
- Ganim, Z.; Tokmakov, A.; Vaziri, A. Vibrational excitons in ionophores: Experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels. New J. Phys. 2011, 13, 113030. [Google Scholar] [CrossRef]
- Vaziri, A.; Plenio, M.B. Quantum coherence in ion channels: Resonances, transport and verification. New J. Phys. 2011, 12, 085001. [Google Scholar] [CrossRef]
- Summhammer, J.; Salari, V.; Bernroider, G. A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels. J. Integr. Neurosci. 2012, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Salari, V.; Tuszynski, J.; Rahnama, M.; Bernroider, G. Plausibility of quantum coherent states in biological systems. J. Phys. Conf. Ser. 2011, 306, 012075. [Google Scholar] [CrossRef]
- Bernroider, G.; Summhammer, J. Can quantum entanglement between ion transition states affect action potential initiation? Cognit. Comput. 2012, 4, 29. [Google Scholar] [CrossRef]
- Moradi, N.; Scholkmann, F.; Salari, V. A study of quantum mechanical probabilities in the classical Hodgkin-Huxley model. J. Integr. Neurosci. 2015, 14, 1. [Google Scholar] [CrossRef]
- Romijn, H. Are virtual photon the elementary carriers of consciousness? J. Conscious. Study 2002, 9, 61–81. [Google Scholar]
- Ròżyk-Myrta, A.; Brodziak, A.; Muc-Wierzgoǹ, M. Neural Circuits, Microtubule Processing, Brain’s Electromagnetic Field—Components of Self-Awareness. Brain Sci. 2021, 11, 984. [Google Scholar] [CrossRef]
- Mahan, G.D. Many-Particle Physics; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Mattuck, R.D. A Guide to Feynman Diagrams in the Many-Body Problem; Dover: New York, NY, USA, 1992. [Google Scholar]
- Hameroff, S.R.; Watt, R.C. Information Processing in Microtubules. J. Theor. Biol. 1982, 98, 549. [Google Scholar] [CrossRef]
- Smith, S.A.; Watt, R.C.; Hameroff, S.R. Cellular Automata In Cytoskeletal Lattices. Physica 1984, 10D, 168. [Google Scholar] [CrossRef]
- Hameroff, S.R.; Smith, S.A.; Watt, R.C. Automaton Model of Dynamic Organization in Microtubules. Ann. N. Y. Acad. Sci. 1986, 446, 949. [Google Scholar] [CrossRef]
- Rasmussen, S.; Karampurwala, H.; Vaidyanath, R.; Jensen, K.S.; Hameroff, S. Computational Connectionism Within Neurons: A Model Of Cytoskeletal Automata Subserving Neural Networks. Phys. D 1990, 42, 428. [Google Scholar] [CrossRef]
- Lahoz-Beltra, R.; Hameroff, S.R.; Dayhoff, J.E. Cytoskeletal logic: A model for molecular computation via Boolean operations in microtubules and microtubule-associated proteins. BioSystems 1993, 29, 1. [Google Scholar] [CrossRef]
- Dayhoff, J.; Hameroff, S.; Lahoz-Beltra, R.; Swenberg, C.E. Cytoskeletal involvement in neuronal learning: A review. Eur. Biophys. J. 1994, 23, 79. [Google Scholar] [CrossRef]
- Kastner, R.E. The Transactional Interpretation of Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kastner, R.E. Understanding our unseen Reality: Solving Quantum Riddles; Imperial College Press: London, UK, 2015. [Google Scholar]
- Wick, D. The Infamous Boundary. Seven Decades of Controversy in Quantum Physics; Springer: Berlin, Germany, 1995. [Google Scholar]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Goodson, H.V.; Jonasson, E.M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol. 2018, 10, a022608. [Google Scholar] [CrossRef] [PubMed]
- Steiner, B.; Mandelkow, E.-M.; Biernat, J.; Gustke, N.; Meyer, H.E.; Schmidt, B.; Mieskes, G.; Soling, H.D.; Drechsel, D.; Kirschner, M.W.; et al. Phosphorylation of microtubule-associated protein tau: Identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tanglesa. EMBO J. 1990, 9, 3539. [Google Scholar] [CrossRef] [PubMed]
- Waxham, M.N. Calcium-Calmodulin Kinase II (CaMKII) in Learning and Memory. Encycl. Neurosci. 2009, 581–588. [Google Scholar] [CrossRef]
- Baratier, J.; Peris, L.; Brocard, J.; Gory-Faurè, S.; Dufour, F.; Bosc, C.; Fourest-Lieuvin, A.; Blanchoin, L.; Salin, P.; Job, D.; et al. Phosphorylation of Microtubule-associated Protein STOP by Calmodulin Kinase II. J. Biol. Chem. 2006, 281, 19561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craddock, T.J.A.; Tuszynski, J.A.; Hameroff, S. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation? Comput. Biol. 2012, 8, e1002421. [Google Scholar] [CrossRef] [Green Version]
- Vallano, M.L.; Goldenring, J.R.; Buckholz, T.M.; Larson, R.E.; Delorenzo, R.J. Separation of endogenous calmodulin- and cAMP-dependent kinases from microtubule preparations. Proc. Nad. Acad. Sci. USA 1985, 82, 3202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradin, H.M.; Marklund, U.; Larsson, N.; Chatila, T.A.; Gullberg, M. Regulation of Microtubule Dynamics by Ca21/Calmodulin-Dependent Kinase IV/Gr-Dependent Phosphorylation of Oncoprotein 18. Mol. Cell. Biol. 1997, 17, 3459. [Google Scholar] [CrossRef] [Green Version]
- Schulman, H.; Kuret, J.; Jefferson, A.B.; Nose, P.S.; Spitzer, K.H. Ca2+/Calmodulin-Dependent Microtubule-Associated Protein 2 Kinase: Broad Substrate Specificity and Multifunctional Potential in Diverse Tissues. Biochemistry 1985, 24, 5320. [Google Scholar] [CrossRef]
- Craddock, T.J.A.; Kurian, P.; Tuszynski, J.A.; Hameroff, S.R. Quantum Processes in Neurophotonics and the Origin of Brain’s Spatiotemporal Hierarchy. In Neurophotonics and Biomedical Spectroscopy; Elsevier: Amsterdam, The Netherland, 2019; p. 189. [Google Scholar]
- Chang, J.-J.; Fisch, J.; Popp, F.-A. (Eds.) Biophotons; Springer: Dordrecht, Germany, 1998. [Google Scholar]
- Popp, F.-A.; Beloussov, L. (Eds.) Integrative Biophysics. Biophotonics; Springer: Dordrecht, Germany, 2003. [Google Scholar]
- Fels, D.; Cifra, M.; Scholkmann, F. (Eds.) Fields of the Cell; Research Signpost: Kerala, India, 2015. [Google Scholar]
- Kurian, P.; Obisesan, T.O.; Craddock, T.J.A. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease. J. Photochem. Photobiol. B Biol. 2017, 175, 109. [Google Scholar] [CrossRef] [PubMed]
- Haken, H.; Strobl, G. An exactly solvable model for coherent and incoherent exciton motion. Z. Phys. 1973, 262, 135. [Google Scholar] [CrossRef]
- Abasto, D.F.; Mohseni, M.; Lloyd, S.; Zanardi, P. Exciton diffusion length in complex quantum systems: The effect of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Phil. Trans. R. Soc. A 2012, 1972, 3750. [Google Scholar] [CrossRef] [PubMed]
- Celardo, C.L.; Giusteri, G.G.; Borgonovi, F. Cooperative robustness to static disorder: Superradiance and localization in a nanoscale ring to model light-harvesting systems found in nature. Phys. Rev. B 2014, 90, 075113. [Google Scholar] [CrossRef] [Green Version]
- Celardo, C.L.; Poli, P.; Lussardi, L.; Borgonovi, F. Cooperative robustness to dephasing: Single-exciton superradiance in a nanoscale ring to model light-harvesting systems. Phys. Rev. B 2014, 90, 085142. [Google Scholar] [CrossRef] [Green Version]
- Kalra, A.P.; Benny, A.; Travis, S.M.; Zizzi, E.A.; Morales-Sanchez, A.; Oblinski, D.G.; Craddock, T.J.A.; Hameroff, S.R.; Maclever, M.B.; Tuszynski, J.A.; et al. Electronic Energy Migration in Microtubules. arXiv 2022, arXiv:2208.10628. Available online: https://arxiv.org/abs/2208.10628 (accessed on 9 January 2023). [CrossRef]
- Veljkovic, V.; Veljkovic, N.; Esté, J.A.; Dietrich, U. Applicatiion of the EIIP/ISM Bionfomatics in Development of New Drugs. Curr. Med. Chem. 2007, 14, 133. [Google Scholar] [CrossRef]
- Ricciardi, L.M.; Umezawa, H. Brain and Physics of Many-Body Problems. Kybernetik 1967, 4, 44–48. [Google Scholar] [CrossRef]
- Umezawa, H.; Matsummoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North-Holland: Amsterdam, The Netherland, 1982. [Google Scholar]
- Umezawa, H. Advanced Field Theory. Micro Macro Thermal Physics; AIP: New York, NY, USA, 1995. [Google Scholar]
- Nambu, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev. 1960, 117, 648–663. [Google Scholar] [CrossRef]
- Goldstone, J. Field Theories with Superconductor Solutions. Nuovo C. 1961, 19, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Goldstone, J.; Salam, A.; Weinberg, S. Broken Symmetries. Phys. Rev. 1962, 27, 965–970. [Google Scholar]
- Flannery, J.S.; Riedel, M.C.; Bottenhorn, K.L.; Poudel, R.; Salo, T.; Hill-Bowen, L.D.; Laird, A.R.; Sutherland, M.T. Meta-analytic clustering dissociates brain activity and behavior profiles across reward processing paradigms. Cogn. Affect. Behav. Neurosci. 2020, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, A.; Sandoval-Espinosa, C.; Otero-Garcia, M.; Oh, I.; Yin, R.; Eze, U.C.; Nowakowski, T.J.; Kriegstein, A.R. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 2021, 598, 200. [Google Scholar] [CrossRef]
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. A Quantum Field Theoretical Approach to the Collective Behaviour of Biological Systems. Nucl. Phys. 1985, B251, 375–400. [Google Scholar] [CrossRef]
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Electromagnetic field and spontaneous symmetry breakdown in biological matter. Nucl. Phys. 1986, B275, 185–199. [Google Scholar] [CrossRef]
- Del Giudice, E.; Vitiello, G. Preparata, G. Water as a free electron laser. Phys. Rev. Lett. 1988, 61, 1085–1088. [Google Scholar] [CrossRef]
- Jibu, M.; Yasue, K. Quantum Brain Dynamics and Consciousness; John Benjamins: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Jibu, M.; Yasue, K. What Is Mind? Quantum Field Theory of Evanescent Photons in Brain as Quantum Theory of Consciousness. Informatica 1997, 21, 471. [Google Scholar]
- Preparata, G. QED Coherence in Matter; World Scientific: Singapore, 1995. [Google Scholar]
- Ling, G.N. Life at the Cell and Below-Cell Level; Pacific Press: New York, NY, USA, 2001. [Google Scholar]
- Blasone, M.; Vitiello, G.; Jizba, P. Quantum Field Theory and its Macroscopic Manifestations. Boson Condensation, Ordered Patterns, and Topological Defects; Imperial College Press: London, UK, 2011. [Google Scholar]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Nonequilibrium quantum brain dynamics: Super-Radiance and Equilibration in 2+1 Dimensions. Entropy 2019, 21, 1066. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, A.; Tuszynski, J.A. Non-Equilibrium Φ4 theory for networks: Toward memory formations with quantum brain dynamics. J. Phys. Commun. 2019, 3, 055020. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Nonequilibrium quantum brain dynamics, Chap 5. Adv. Quantum Chem. 2020, 82, 159. [Google Scholar]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Non-Equilibrium Quantum Brain Dynamics II: Formulation in 3+1 Dimensions. Phys. A 2021, 567, 125706. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergi, A.; Messina, A.; Vicario, C.M.; Martino, G. A Quantum–Classical Model of Brain Dynamics. Entropy 2023, 25, 592. https://doi.org/10.3390/e25040592
Sergi A, Messina A, Vicario CM, Martino G. A Quantum–Classical Model of Brain Dynamics. Entropy. 2023; 25(4):592. https://doi.org/10.3390/e25040592
Chicago/Turabian StyleSergi, Alessandro, Antonino Messina, Carmelo M. Vicario, and Gabriella Martino. 2023. "A Quantum–Classical Model of Brain Dynamics" Entropy 25, no. 4: 592. https://doi.org/10.3390/e25040592
APA StyleSergi, A., Messina, A., Vicario, C. M., & Martino, G. (2023). A Quantum–Classical Model of Brain Dynamics. Entropy, 25(4), 592. https://doi.org/10.3390/e25040592