Quantum–Classical Hybrid Systems and Ehrenfest’s Theorem
Abstract
:1. Introduction
2. Relation between Quantum and Classical Worlds
3. Ehrenfest Theorem for Bipartite Systems
4. The Dynamics of Quantum–Classical Hybrids
5. Ehrenfest’s Theorem for Quantum–Classical Hybrids
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QCH | quantum–classical hybrid |
QM | quantum mechanics |
OI | orthodox interpretation |
Appendix A. Ehrenfest’s Theorem in Quantum Systems
Appendix B. Operator-Valued Wigner Function, Quantum–Classical Bracket, and Partial Wigner Transform
References
- Rivas, A.; Huelga, S.F. Open Quantum Systems; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Isar, A.; Sandulescu, A.; Scutaru, H.; Stefanescu, E.; Scheid, W. Open Quantum Systems. Int. J. Mod. Phys. E 1994, 3, 635. [Google Scholar] [CrossRef] [Green Version]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Kapral, R. Quantum dynamics in open quantum–classical systems. J. Phys. Condens. Matter 2015, 27, 073201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballentine, L.E. Quantum Mechanics: A Modern Development; World Scientific: Singapore, 2001. [Google Scholar]
- Ballentine, L.E.; Yang, Y.; Zibin, J.P. Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Phys. Rev. A 1994, 50, 2854. [Google Scholar] [CrossRef] [PubMed]
- Messiah, A. Quantum Mechanics; Wiley: New York, NY, USA, 1966. [Google Scholar]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z. Ehrenfest Theorem in Relativistic Quantum Theory. arXiv 2022. Available online: https://arxiv.org/abs/2111.10798v2 (accessed on 9 February 2023). [CrossRef]
- Silin, V.P. The Kinetics of Paramagnetic Phenomena. Zh. Teor. Eksp. Fiz. 1956, 30, 421. [Google Scholar]
- Rukhazade, A.A.; Silin, V.P. On the magnetic susceptibility of a relativistic electron gas. Soviet Phys. JETP 1960, 11, 463. [Google Scholar]
- Balescu, R. A Covariant Formulation of Relativistic Quantum Statistical Mechanics. I. Phase Space Description of a Relativistic Quantum Plasma. Acta Phys. Aust. 1968, 28, 336. [Google Scholar]
- Zhang, W.Y.; Balescu, R. Statistical Mechanics of a spin-polarized plasma. J. Plasma Phys. 1988, 40, 199. [Google Scholar] [CrossRef]
- Balescu, R.; Zhang, W.Y. Kinetic equation, spin hydrodynamics and collisional depolarization rate in a spin polarized plasma. J. Plasma Phys. 1988, 40, 215. [Google Scholar] [CrossRef]
- Osborn, T.A.; Kondrat’eva, M.F.; Tabisz, G.C.; McQuarrie, B.R. Mixed Weyl symbol calculus and spectral line shape theory. J. Phys. A Math. Gen. 1999, 32, 4149. [Google Scholar] [CrossRef]
- Aleksandrov, I.V. The Statistical Dynamics of a System Consisting of a Classical and a Quantum Subsystem. Z. Naturforsch. 1981, 36a, 902. [Google Scholar] [CrossRef]
- Boucher, W.; Traschen, J. Semiclassical physics and quantum fluctuations. Phys. Rev. D 1988, 37, 3522. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, V.I. Dynamical Equations of Quantum-Classical Systems. Theor. Math. Phys. 1982, 50, 77. [Google Scholar] [CrossRef]
- Nielsen, S.; Kapral, R.; Ciccotti, G. Statistical mechanics of quantum–classical systems. J. Chem. Phys. 2001, 115, 5805. [Google Scholar] [CrossRef]
- Sergi, A. Non-Hamiltonian commutators in quantum mechanics. Phys. Rev. E 2005, 72, 066125. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A. Statistical Mechanics of Quantum-Classical Systems with Holonomic Constraints. J. Chem. Phys. 2006, 124, 024110. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Hanna, G.; Grimaudo, R.; Messina, A. Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in a Classical Bath. Symmetry 2018, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Kapral, R.; Ciccotti, G. Mixed Quantum-Classical Dynamics. J. Chem. Phys. 1999, 110, 8919. [Google Scholar] [CrossRef]
- Makri, N.; Thompson, K. Semiclassical influence functionals for quantum systems in anharmonic environments. Chem. Phys. Lett. 1998, 291, 101. [Google Scholar] [CrossRef]
- Thompson, K.; Makri, N. Influence functionals with semiclassical propagators in combined forward-backward time. J. Chem. Phys. 1999, 110, 1343. [Google Scholar] [CrossRef] [Green Version]
- Elze, H.-T.; Gambarotta, G.; Vallone, F. General linear dynamics-quantum, classical or hybrid. J. Phys. Conf. Ser. 2011, 306, 012010. [Google Scholar] [CrossRef] [Green Version]
- Elze, H.-T. Quantum-classical hybrid dynamics—A summary. J. Phys. Conf. Ser. 2013, 442, 012007. [Google Scholar] [CrossRef] [Green Version]
- Diósi, L. Hybrid quantum–classical master equations. Phys. Scr. 2014, T163, 014004. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W. Consistent classical and quantum mixed dynamics. Phys. Rev. A 2008, 78, 042104. [Google Scholar] [CrossRef] [Green Version]
- Reginatto, M.; Hall, M.J.W. Quantum-classical interactions and measurement: A consistent description using statistical ensembles on configuration space. J. Phys. Conf. Ser. 2009, 174, 012038. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 1996, 213, 1. [Google Scholar] [CrossRef] [Green Version]
- Man’ko, O.V.; Man’ko, V.I. Quantum states in probability representation and tomography. J. Russ. Laser Res. 1997, 18, 407. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. Probability Description and Entropy of Classical and Quantum Systems. Found. Phys. 2011, 41, 330. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, V.I. System with classical and quantum subsystems in tomographic probability representation. AIP Conf. Proc. 2012, 1424, 33. [Google Scholar]
- Man’ko, M.A.; Man’ko, V.I. Entropy of conditional tomographic probability distributions for classical and quantum systems. J. Phys. Conf. Ser. 2013, 442, 012008. [Google Scholar]
- Berry, M.V. Semi-classical mechanics in phase space: A study of Wigner’s function. Philo. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1977, 287, 237. [Google Scholar]
- Stapp, H.P. The Copenhagen Interpretation. Am. J. Phys. 1972, 40, 1098. [Google Scholar] [CrossRef] [Green Version]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, UK, 1983. [Google Scholar]
- Bell, J.S. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Styer, D.F.; Balkin, M.S.; Becker, K.M.; Burns, M.R.; Dudley, C.E.; Forth, S.T.; Gaumer, J.S.; Kramer, M.A.; Oertel, D.C.; Park, L.H.; et al. Nine Formulations of Quantum Mechanics. Am. J. Phys. 2001, 70, 288. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifsits, E.M. Quantum Mechanics. Non-Relativistic Theory; Pergamon Press: Oxford, UK, 1991. [Google Scholar]
- Wick, D. The Infamous Boundary; Birkhauser: Boston, MA, USA, 1995. [Google Scholar]
- Smolin, L. Einstein’s Unfinished Revolution: The Search for What Lies beyond the Quantum; Penguin Press: New York, NY, USA, 2019. [Google Scholar]
- Maudlin, T. Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics; Blackwell: Oxford, UK, 2002. [Google Scholar]
- Holland, P.R. The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Cramer, J.G. The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 1986, 58, 647. [Google Scholar] [CrossRef]
- Cramer, J.G. The Quantum Handshake: Entanglement, Nonlocality and Transactions; Springer: Dordecrecht, The Netherlands, 2016. [Google Scholar]
- Kastner, R.E. The Transactional Interpretation of Quantum Mechanics: The Reality of Possibility; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Birrel, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Ford, L.H. Gravitational Radiation by Quantum Systems. Ann. Phys. 1982, 144, 238. [Google Scholar] [CrossRef]
- Kuo, C.-I.; Ford, L.H. Semiclassical gravity theory and quantum fluctuations. Phys. Rev. D 1993, 47, 4510. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.P.; Morinigo, F.; Wagner, W.G. Feynman Lectures on Gravitation; Addison-Wesley: Reading, MA, USA, 1995. [Google Scholar]
- DeWitt, B.; DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113. [Google Scholar]
- Polchinski, J. String Theory Vol. I: An Introduction to the Bosonic String; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Polchinski, J. String Theory Vol. II: Superstring Theory and Beyond; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Ashtekar, A. New variables for classical and quantum gravity. Phys. Rev. Lett. 1986, 57, 2244. [Google Scholar] [CrossRef]
- Ashtekar, A. New Hamiltonian formulation of general relativity. Phys. Rev. D 1987, 36, 1587. [Google Scholar] [CrossRef]
- Sakharov, A.D. Vacuum quantum fluctuations in curved space and the theory of gravitation. Dokl. Akad. Nauk SSSR 1967, 177, 70. [Google Scholar]
- Visser, M. Sakharov’s Induced Gravity: A Modern Perspective. Mod. Phys. Lett. A 2002, 17, 977. [Google Scholar] [CrossRef] [Green Version]
- Verlinde, E. On the origin of gravity and the laws of Newton. JHEP 2011, 29, 2011. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 1995, 75, 1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, E.; Park, I.Y.; Sin, S.-J. Complete Einstein equations from the generalized First Law of Entanglement. Phys. Rev. D 2018, 98, 026020. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Kim, H.-C.; Lee, J. Gravity from Quantum Information. J. Korean Phys. Soc. 2013, 63, 1094. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. On Gravity’s Role in Quantum State Reduction. Gen. Relativ. Gravit. 1996, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Found. Phys. 2014, 44, 557. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. On the Gravitization of Quantum Mechanics 2: Conformal Cyclic Cosmology. Found. Phys. 2014, 44, 873. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, A.; Sergi, A.; Messina, A. Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature. Entropy 2021, 23, 147. [Google Scholar] [CrossRef]
- Uken, D.A.; Sergi, A. Quantum dynamics of a plasmonic metamolecule with a time-dependent driving. Theor. Chem. Accounts 2015, 134, 141. [Google Scholar] [CrossRef] [Green Version]
- Sewran, S.; Zloshchastiev, K.G.; Sergi, A. Non-Hamiltonian Modeling of Squeezing and Thermal Disorder in Driven Oscillators. J. Stat. Phys. 2015, 159, 255–273. [Google Scholar] [CrossRef] [Green Version]
- Zloshchastiev, K.G.; Sergi, A. Comparison and unification of non-Hermitian and Lindblad approaches with applications to open quantum optical systems. J. Mod. Opt. 2014, 61, 1298–1308. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A. Computer Simulation of Quantum Dynamics in a Classical Spin Environment. Theor. Chem. Accounts 2014, 133, 1495. [Google Scholar] [CrossRef] [Green Version]
- Beck, G.M.; Sergi, A. Quantum dynamics in the partial Wigner picture. J. Phys. A Math. Theor. 2013, 46, 395305. [Google Scholar] [CrossRef]
- Dlamini, N.; Sergi, A. Quantum dynamics in classical thermal baths. Comput. Phys. Commun. 2013, 184, 2474–2477. [Google Scholar] [CrossRef]
- Sergi, A. Communication: Quantum dynamics in classical spin baths. J. Chem. Phys. 2013, 139, 031101. [Google Scholar] [CrossRef] [Green Version]
- Uken, D.A.; Sergi, A.; Petruccione, F. Filtering Schemes in the Quantum-Classical Liouville Approach to Non-adiabatic Dynamics. Phys. Rev. E 2013, 88, 033301. [Google Scholar] [CrossRef] [Green Version]
- Uken, D.A.; Sergi, A.; Petruccione, F. Stochastic Simulation of Nonadiabatic Dynamics at Long Time. Phys. Scr. 2011, T143, 014024. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide Dismutases. Annu. Rev. Biochem. 1975, 44, 147. [Google Scholar] [CrossRef]
- Oberley, L.W.; Buettner, G.R. Role of Superoxide Dismutase in Cancer: A Review. Cancer Res. 1979, 39, 1141. [Google Scholar]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: The first twenty years (1968–1988). Free. Radic. Biol. Med. 1988, 5, 363. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.C.; Corsi, D.; Cavi, N.; Bruni, N.; Dosio, F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021, 26, 1844. [Google Scholar] [CrossRef] [PubMed]
- Fano, U. Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Rev. Mod. Phys. 1957, 29, 74. [Google Scholar] [CrossRef]
- ter Haar, D. Theory and applications of the density matrix. Rep. Prog. Phys. 1961, 24, 304. [Google Scholar] [CrossRef]
- Blum, K. Density Matrix and Applications; Springer: Berlin, Germany, 2012. [Google Scholar]
- Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749. [Google Scholar] [CrossRef]
- Moyal, J.E. Quantum Mechanics as a Statistical Theory. Proc. Cam. Phil. Soc. 1949, 45, 99. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121. [Google Scholar] [CrossRef]
- Lee, H. Theory and application of the quantum phase-space distribution functions. Phys. Rep. 1995, 259, 150. [Google Scholar] [CrossRef]
- de Groot, S.R.; Suttorp, L.C. Foundations of Electrodynamics; North-Holland: Amsterda, The Netherlands, 1972. [Google Scholar]
- Schleich, W. Quantum Optics in Phase Space; Wiley: Berlin, Germany, 2001. [Google Scholar]
- Goldstein, H. Classical Mechanics; Addison-Wesley: London, UK, 1980. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergi, A.; Lamberto, D.; Migliore, A.; Messina, A. Quantum–Classical Hybrid Systems and Ehrenfest’s Theorem. Entropy 2023, 25, 602. https://doi.org/10.3390/e25040602
Sergi A, Lamberto D, Migliore A, Messina A. Quantum–Classical Hybrid Systems and Ehrenfest’s Theorem. Entropy. 2023; 25(4):602. https://doi.org/10.3390/e25040602
Chicago/Turabian StyleSergi, Alessandro, Daniele Lamberto, Agostino Migliore, and Antonino Messina. 2023. "Quantum–Classical Hybrid Systems and Ehrenfest’s Theorem" Entropy 25, no. 4: 602. https://doi.org/10.3390/e25040602
APA StyleSergi, A., Lamberto, D., Migliore, A., & Messina, A. (2023). Quantum–Classical Hybrid Systems and Ehrenfest’s Theorem. Entropy, 25(4), 602. https://doi.org/10.3390/e25040602