Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation
Abstract
:1. Introduction
2. Complex Potentials with Real Energy Levels
2.1. Constructions Using Perturbation Theory
2.2. Constructions Using —Symmetry
2.3. The Jones and Mateo Wrong-Sign Model with
2.4. The Buslaev and Grecchi Anharmonic Wrong-Sign Model
3. Hidden Hermitian Theory in Stationary Regime
3.1. Non-Hermitian Schrödinger Representation
3.2. The Case of Stationary Wrong-Sign Potentials
4. Quantum Theory in Non-Stationary Dynamical Regime
4.1. Evolution Equations for States
4.2. Physics behind the Equations
4.3. Heisenbergian Evolution Equations for Observables
5. Time-Dependent Wrong-Sign Oscillators
5.1. The Fring and Tenney Construction
5.2. Physical Background
5.3. Alternative, Physics-Motivated NIP Constructions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flügge, S. Practical Quantum Mechanics I; Springer: Berlin, Germany, 1971. [Google Scholar]
- Buslaev, V.; Grecchi, V. Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen. 1993, 26, 5541–5549. [Google Scholar] [CrossRef]
- Grecchi, V.; Bologna University, Bologna, Italy. Private communication, 16 February 2000.
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947–1118. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermitian Representation of Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 1191–1306. [Google Scholar] [CrossRef]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bender, C.M.; Turbiner, A. Analytic continuation of eigenvalue problems. Phys. Lett. A 1993, 173, 442–446. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef]
- Scholtz, F.G.; Geyer, H.B.; Hahne, F.J.W. Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. 1992, 213, 74–101. [Google Scholar] [CrossRef]
- Bender, C.M. PT Symmetry in Quantum and Classical Physics; World Scientific: Singapore, 2018. [Google Scholar]
- Fring, A.; Tenney, R. Spectrally equivalent time-dependent double wells and unstable anharmonic oscillators. Phys. Lett. A 2020, 384, 126530. [Google Scholar] [CrossRef]
- Dieudonne, J. Quasi-Hermitian Operators. In Proceedings of the International Symposium on Linear Spaces; Pergamon: Oxford, UK, 1961; pp. 115–122. [Google Scholar]
- Messiah, A. Quantum Mechanics; North Holland: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Herbst, I. Dilation analyticity in constant electric field: I. The two body problem. Commun. Math. Phys. 1979, 64, 279. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Nonperturbative Square-Well Approximation to a Quantum Theory. J. Math. Phys. 1990, 31, 2579–2585. [Google Scholar]
- Jones, H.F.; Mateo, J. An Equivalent Hermitian Hamiltonian for the non-Hermitian -x4 Potential. Phys. Rev. D 2006, 73, 085002. [Google Scholar] [CrossRef]
- Znojil, M. Time-dependent version of cryptohermitian quantum theory. Phys. Rev. D 2008, 78, 085003. [Google Scholar] [CrossRef]
- Znojil, M. Three-Hilbert-space formulation of Quantum Mechanics. Symm. Integ. Geom. Meth. Appl. SIGMA 2009, 5, 001. [Google Scholar] [CrossRef]
- Znojil, M. Non-Hermitian interaction representation and its use in relativistic quantum mechanics. Ann. Phys. 2017, 385, 162–179. [Google Scholar] [CrossRef]
- Brody, D.C. Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 2013, 47, 035305. [Google Scholar] [CrossRef]
- Fring, A.; Tenney, R. Lewis-Riesenfeld invariants for PT-symmetrically coupled oscillators from two-dimensional point transformations and Lie algebraic expansions. J. Math. Phys. 2022, 63, 123509. [Google Scholar] [CrossRef]
- Bíla, H. Adiabatic time-dependent metrics in PT-symmetric quantum theories. arXiv 2009, arXiv:0902.0474. [Google Scholar]
- Christodoulides, D.; Yang, J.-K. (Eds.) Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018. [Google Scholar]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Znojil, M. Non-Hermitian Heisenberg representation. Phys. Lett. A 2015, 379, 20132017. [Google Scholar] [CrossRef]
- Fring, A.; Moussa, M.H.Y. Unitary quantum evolution for time-dependent quasi-Hermitian systems with non-observable Hamiltonians. Phys. Rev. A 2016, 93, 042114. [Google Scholar] [CrossRef]
- Luiz, F.S.; Pontes, M.A.; Moussa, M.H.Y. Unitarity of the time-evolution and observability of non-Hermitian Hamiltonians for time-dependent Dyson maps. Phys. Scr. 2020, 95, 065211. [Google Scholar] [CrossRef]
- Ju, C.-Y.; Miranowicz, A.; Minganti, F.; Chan, C.-T.; Chen, G.-Y.; Nori, F. Einstein’s Quantum Elevator: Hermitization of Non-Hermitian Hamiltonians via a generalized vielbein Formalism. Phys. Rev. Res. 2022, 4, 023070. [Google Scholar] [CrossRef]
- Znojil, M. Systematics of quasi-Hermitian representations of non-Hermiitan quantum models. Ann. Phys. 2023, 448, 169198. [Google Scholar] [CrossRef]
- Bishop, R.F.; Znojil, M. Non-Hermitian coupled cluster method for non-stationary systems and its interaction-picture reinterpretation. Eur. Phys. J. Plus 2020, 135, 374. [Google Scholar] [CrossRef]
- Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 1981, 188, 513–554. [Google Scholar] [CrossRef]
- Witten, E. Constraints on Supersymmetry Breaking. Nucl. Phys. B 1982, 202, 253–317. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Bender, C.M.; Wu, T.T. Anharmonic Oscillator. Phys. Rev. 1969, 184, 1231–1260. [Google Scholar] [CrossRef]
- Turbiner, A.; del Valle, D.C. Anharmonic oscillator: A solution. J. Phys. A Math. Theor. 2021, 54, 295404. [Google Scholar] [CrossRef]
- Fernández, F.; Guardiola, R.; Ros, J.; Znojil, M. Strong-coupling expansions for the PT-symmetric oscillators V(r) = aix + b(ix)2 + c(ix)3. J. Phys. A Math. Gen. 1998, 31, 10105–10112. [Google Scholar] [CrossRef]
- Caliceti, E.; Graffi, S.; Maioli, M. Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 1980, 75, 51–66. [Google Scholar] [CrossRef]
- Álvarez, G.; Casares, C. Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator. J. Phys. A Math. Gen. 2000, 33, 5171–5182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znojil, M. Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation. Entropy 2023, 25, 692. https://doi.org/10.3390/e25040692
Znojil M. Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation. Entropy. 2023; 25(4):692. https://doi.org/10.3390/e25040692
Chicago/Turabian StyleZnojil, Miloslav. 2023. "Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation" Entropy 25, no. 4: 692. https://doi.org/10.3390/e25040692
APA StyleZnojil, M. (2023). Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation. Entropy, 25(4), 692. https://doi.org/10.3390/e25040692