Illegal Community Detection in Bitcoin Transaction Networks
Abstract
:1. Introduction
2. Preliminaries
3. Materials and Methods
3.1. Illegal Community Detection
3.2. Data
3.3. User Detection
3.4. Community Detection
3.4.1. Distance-Based Methods
3.4.2. Spectral Clustering
3.4.3. Community Quality Optimization
3.4.4. Label Propagation
3.4.5. Clique Percolation Method (CPM)
3.4.6. Network Representation Learning
4. Experiments and Results
4.1. Results
4.1.1. Benchmark Results
4.1.2. Illegal Community Detection Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polge, J.; Robert, J.; Le Traon, Y. Permissioned blockchain frameworks in the industry: A comparison. ICT Express 2021, 7, 229–233. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 1 October 2022).
- Kalodner, H.; Möser, M.; Lee, K.; Goldfeder, S.; Plattner, M.; Chator, A.; Narayanan, A. BlockSci: Design and Applications of a Blockchain Analysis Platform. In Proceedings of the 29th USENIX Security Symposium; USENIX Association: Berkeley, CA, USA, 2020; pp. 2721–2738. [Google Scholar]
- Vallarano, N.; Tessone, C.J.; Squartini, T. Bitcoin Transaction Networks: An Overview of Recent Results. Front. Phys. 2020, 8, 286. [Google Scholar] [CrossRef]
- De Collibus, F.M.; Partida, A.; Piškorec, M.; Tessone, C.J. Heterogeneous Preferential Attachment in Key Ethereum-Based Cryptoassets. Front. Phys. 2021, 9, 568. [Google Scholar] [CrossRef]
- De Collibus, F.M.; Piškorec, M.; Partida, A.; Tessone, C.J. The Structural Role of Smart Contracts and Exchanges in the Centralisation of Ethereum-Based Cryptoassets. Entropy 2022, 24, 1048. [Google Scholar] [CrossRef] [PubMed]
- Meiklejohn, S.; Pomarole, M.; Jordan, G.; Levchenko, K.; McCoy, D.; Voelker, G.M.; Savage, S. A fistful of Bitcoins: Characterizing payments among men with no names. Commun. ACM 2016, 59, 86–93. [Google Scholar] [CrossRef]
- Jourdan, M.; Blandin, S.; Wynter, L.; Deshpande, P. Characterizing Entities in the Bitcoin Blockchain. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 55–62. [Google Scholar]
- Zhao, K.; Dong, G.; Bian, D. Detection of Illegal Transactions of Cryptocurrency Based on Mutual Information. Electronics 2023, 12, 1542. [Google Scholar] [CrossRef]
- Turner, A.; Irwin, A.S.M. Bitcoin transactions: A digital discovery of illicit activity on the blockchain. J. Financial Crime 2018, 25, 109–130. [Google Scholar] [CrossRef]
- Nerurkar, P. Illegal activity detection on bitcoin transaction using deep learning. Soft Comput. 2023, 27, 5503–5520. [Google Scholar] [CrossRef]
- Qin, F.; Wu, Y.; Tao, F.; Liu, L.; Shi, L.; Miller, A.J. Multi-input address incremental clustering for the Bitcoin blockchain based on Petri net model analysis. Digit. Commun. Netw. 2022, 8, 680–686. [Google Scholar] [CrossRef]
- Wu, S.X.; Wu, Z.; Chen, S.; Li, G.; Zhang, S. Community Detection in Blockchain Social Networks. J. Commun. Inf. Netw. 2021, 6, 59–71. [Google Scholar] [CrossRef]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Xue, S.; Liu, F.; Wu, J.; Yang, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Jin, D.; et al. A Comprehensive Survey on Community Detection With Deep Learning. IEEE Trans. Neural Networks Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Wang, M.; Xu, E.; Xie, H.; Bie, R. Securing IOTA Blockchain Against Tangle Vulnerability by Using Large Deviation Theory. IEEE Internet Things J. 2023. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Wang, Y.; Bie, R. Toward Prevention of Parasite Chain Attack in IOTA Blockchain Networks by Using Evolutionary Game Model. Mathematics 2022, 10, 1108. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Kannan, R.; Vempala, S.; Vetta, A. On clusterings: Good, bad and spectral. J. ACM 2004, 51, 497–515. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lázár, A.; Ábel, D.; Vicsek, T. Modularity measure of networks with overlapping communities. Europhys. Lett. 2010, 90, 18001. [Google Scholar] [CrossRef] [Green Version]
- Janczewski, C. Two Arrested for Alleged Conspiracy to Launder $4.5 Billion in Stolen Cryptocurrency; U.S. Department of Justice: Washington, DC, USA, 2022.
- Jourdan, M.; Blandin, S.; Wynter, L.; Deshpande, P. A probabilistic model of the bitcoin blockchain. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Fischer, J.A.; Palechor, A.; Dell’aglio, D.; Bernstein, A.; Tessone, C.J. The Complex Community Structure of the Bitcoin Address Correspondence Network. Front. Phys. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Möser, M.; Narayanan, A. Resurrecting Address Clustering in Bitcoin. In Proceedings of the International Conference on Financial Cryptography and Data Security, Grand Anse, Grenada, 2–6 May 2022; pp. 386–403. [Google Scholar] [CrossRef]
- Javed, M.A.; Younis, M.S.; Latif, S.; Qadir, J.; Baig, A. Community detection in networks: A multidisciplinary review. J. Netw. Comput. Appl. 2018, 108, 87–111. [Google Scholar] [CrossRef]
- MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Portland, Oregon, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [Google Scholar] [CrossRef]
- He, K.; Sun, Y.; Bindel, D.; Hopcroft, J.; Li, Y. Detecting Overlapping Communities from Local Spectral Subspaces. In Proceedings of the IEEE International Conference on Data Mining (ICDM), Atlantic City, NJ, USA, 14–17 November 2015; pp. 769–774. [Google Scholar]
- von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Andersen, R.; Chung, F.; Lang, K. Local Graph Partitioning using PageRank Vectors. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), Berkeley, CA, USA, 21–24 October 2006; ACM: New York, NY, USA, 2006; pp. 475–486. [Google Scholar]
- Traag, V.A.; Waltman, L.; Van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019, 9, 5233. [Google Scholar] [CrossRef] [Green Version]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 2007, 76, 036106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Li, W.; Zhao, L.; Su, Z.; Zou, Y.; Deng, W. Community detection in dynamic networks via adaptive label propagation. PLoS ONE 2017, 12, e0188655. [Google Scholar] [CrossRef] [Green Version]
- Traag, V.A.; Šubelj, L. Large network community detection by fast label propagation. Sci. Rep. 2023, 13, 2701. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Szymanski, B.K.; Liu, X. SLPA: Uncovering Overlapping Communities in Social Networks via a Speaker-Listener Interaction Dynamic Process. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011; pp. 344–349. [Google Scholar]
- Cordasco, G.; Gargano, L. Community detection via semi-synchronous label propagation algorithms. In Proceedings of the 2010 IEEE International Workshop on Business Applications of Social Network Analysis, Bangalore, India, 15 December 2010. [Google Scholar]
- Coscia, M.; Rossetti, G.; Giannotti, F.; Pedreschi, D. DEMON: A Local-First Discovery Method for Overlapping Communities. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Beijing China, 12–16 August 2012; pp. 615–623. [Google Scholar]
- Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Golub, G.; Kahan, W. Calculating the Singular Values and Pseudo-Inverse of a Matrix. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 1965, 2, 205–224. [Google Scholar] [CrossRef]
- Binesh, N.; Rezghi, M. Fuzzy clustering in community detection based on nonnegative matrix factorization with two novel evaluation criteria. Appl. Soft Comput. 2018, 69, 689–703. [Google Scholar] [CrossRef]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-scale Information Network Embedding. In Proceedings of the World Wide Web (WWW), Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Grover, A.; Leskovec, J. Node2Vec: Scalable Feature Learning for Networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; Zhang, W. Modularity Based Community Detection with Deep Learning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), New York, NY, USA, 9–15 July 2016; pp. 2252–2258. [Google Scholar]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Representation Learning on Graphs: Methods and Applications. IEEE Data Eng. Bull. 2017, 40, 52–74. [Google Scholar]
- Kamuhanda, D.; Wang, M.; He, K. Sparse Nonnegative Matrix Factorization for Multiple-Local-Community Detection. IEEE Trans. Comput. Soc. Syst. 2020, 7, 1220–1233. [Google Scholar] [CrossRef]
- Chiang, W.L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C.J. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; ACM: New York, NY, USA, 2019; pp. 257–266. [Google Scholar]
- Yang, J.; Leskovec, J. Overlapping community Detection at Scale: A Nonnegative Matrix Factorization Approach. In Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM), Rome, Italy, 4–8 February 2013; pp. 587–596. [Google Scholar]
Bitcoin User Transaction Networks | Nodes | Edges |
---|---|---|
: 31 December 2010 | 584 | 667 |
: 31 December 2011 | 5976 | 7553 |
: 31 December 2012 | 17,594 | 29,730 |
: 31 December 2013 | 56,454 | 93,612 |
: 31 December 2014 | 81,490 | 127,796 |
: 31 December 2015 | 147,813 | 238,988 |
: 31 December 2016 | 285,391 | 421,900 |
: 31 December 2017 | 365,761 | 557,759 |
: 31 December 2018 | 300,135 | 418,657 |
: 31 December 2019 | 346,181 | 507,036 |
: 31 December 2020 | 516,398 | 666,037 |
Bitcoin User Transaction Networks | Nodes | Edges |
---|---|---|
: 25 January 2017 | 711,255 | 1,376,711 |
: 26 January 2017 | 720,994 | 1,560,367 |
: 27 January 2017 | 645,053 | 1,400,766 |
Darknet Market | Bitcoin Address Count |
---|---|
AlphaBayMarket | 189,776 |
SilkRoad2Market | 350,036 |
SilkRoadMarketplace | 372,753 |
YABTCL.com | 3243 |
AgoraMarket | 498,001 |
SheepMarketplace | 53,639 |
BlackBankMarket | 50,878 |
PandoraOpenMarket | 55,757 |
NucleusMarket | 146,381 |
BlueSkyMarketplace | 18,997 |
MiddleEarthMarketplace | 34,149 |
AbraxasMarket | 119,119 |
EvolutionMarket | 420,615 |
Total | 2,313,344 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamuhanda, D.; Cui, M.; Tessone, C.J. Illegal Community Detection in Bitcoin Transaction Networks. Entropy 2023, 25, 1069. https://doi.org/10.3390/e25071069
Kamuhanda D, Cui M, Tessone CJ. Illegal Community Detection in Bitcoin Transaction Networks. Entropy. 2023; 25(7):1069. https://doi.org/10.3390/e25071069
Chicago/Turabian StyleKamuhanda, Dany, Mengtian Cui, and Claudio J. Tessone. 2023. "Illegal Community Detection in Bitcoin Transaction Networks" Entropy 25, no. 7: 1069. https://doi.org/10.3390/e25071069
APA StyleKamuhanda, D., Cui, M., & Tessone, C. J. (2023). Illegal Community Detection in Bitcoin Transaction Networks. Entropy, 25(7), 1069. https://doi.org/10.3390/e25071069