Uplink Assisted MIMO Channel Feedback Method Based on Deep Learning
Abstract
:1. Introduction
- (1)
- We propose a complex asymmetric convolution channel feedback network model to replace the traditional convolution model. This model includes two parts: CSI compression and CSI recovery. The multi-resolution convolution kernel effectively improves feedback accuracy;
- (2)
- In order to verify that multi-resolution can achieve higher accuracy, we conducted ablation experiments, and the results show that the multi-resolution used by this method is due to the use of single-resolution resolution;
- (3)
- To reduce the computational load of the model at the encoder side, we use the magnitude of the uplink at the decoder to assist the downlink CSI recovery from uplink-downlink reciprocity. While deepening the depth of the decoder network, the calculations of the parameters do not significantly increase.
2. System Model
3. Network Structure
3.1. Complex-Valued Neural Network Component
3.2. CUNet Structure
4. Simulation Analysis
4.1. Simulation Parameter Settings
4.2. Simulation Parameter Settings
4.2.1. Ablation Experiment
4.2.2. Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agiwal, M.; Kwon, H.; Park, S.; Jin, H. A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access 2021, 9, 16193–16210. [Google Scholar] [CrossRef]
- GSM Association. The Mobile Economy 2022. 2022. Available online: https://www.gsma.com/mobileeconomy/wpcontent/uploads/2022/02/280222-The-Mobile-Economy-2022.pdf (accessed on 28 February 2022).
- Gadamsetty, P.K.; Hari, K.V.S. A Fast Dictionary Learning Algorithm for CSI Feedback in Massive MIMO FDD Systems. In Proceedings of the 2023 National Conference on Communications (NCC), Guwahati, India, 23–26 February 2023. [Google Scholar] [CrossRef]
- Zeng, W.; He, Y.; Li, B.; Wang, S. Sparsity Learning-Based CSI Feedback for FDD Massive MIMO Systems. IEEE Wirel. Commun. Lett. 2020, 10, 585–588. [Google Scholar] [CrossRef]
- Abdallah, A.; Celik, A.; Mansour, M.M.; Eltawil, A.M. Deep Reinforcement Learning Based Beamforming Codebook Design for RIS-aided mmWave Systems. In Proceedings of the 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2023; pp. 1020–1026. [Google Scholar] [CrossRef]
- Yao, R.; Qin, Q.; Wang, S.; Qi, N.; Fan, Y.; Zuo, X. Deep Learning Assisted Channel Estimation Refinement in Uplink OFDM Systems Under Time-Varying Channels. In Proceedings of the International Wireless Communications and Mobile Computing Conference, Harbin, China, 28 June–2 July 2021. [Google Scholar]
- Gao, X.; Jin, S.; Wen, C.-K.; Li, G.Y. ComNet: Combination of Deep Learning and Expert Knowledge in OFDM Receivers. IEEE Commun. Lett. 2018, 22, 2627–2630. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.-K.; Shih, W.-T.; Jin, S. Deep Learning for Massive MIMO CSI Feedback. IEEE Wirel. Commun. Lett. 2018, 7, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Li, M. CLNet: Complex Input Lightweight Neural Network Designed for Massive MIMO CSI Feedback. IEEE Wirel. Commun. Lett. 2021, 10, 2318–2322. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Song, J. Multi-resolution csi feedback with deep learning in massive mimo system. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Tang, S.; Xia, J.; Fan, L.; Lei, X.; Xu, W.; Nallanathan, A. Dilated Convolution Based CSI Feedback Compression for Massive MIMO Systems. IEEE Trans. Veh. Technol. 2022, 71, 11216–11221. [Google Scholar] [CrossRef]
- Guo, J.; Wen, C.-K.; Jin, S.; Li, G.Y. Convolutional Neural Network-Based Multiple-Rate Compressive Sensing for Massive MIMO CSI Feedback: Design, Simulation, and Analysis. IEEE Trans. Wirel. Commun. 2020, 19, 2827–2840. [Google Scholar] [CrossRef] [Green Version]
- Mashhadi, M.B.; Yang, Q.; Gunduz, D. Distributed Deep Convolutional Compression for Massive MIMO CSI Feedback. IEEE Trans. Wirel. Commun. 2020, 20, 2621–2633. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Ding, Z. An Efficient Deep Learning Framework for Low Rate Massive MIMO CSI Reporting. IEEE Trans. Commun. 2020, 68, 4761–4772. [Google Scholar] [CrossRef]
- Hoydis, J.; Hoek, C.; Wild, T.; Brink, S.T. Channel measurements for large antenna arrays. In Proceedings of the 2012 International Symposium on Wireless Communication Systems, Paris, France, 28–31 August 2012; pp. 811–815. [Google Scholar]
- Zhou, Y.; Herdin, M.; Sayeed, A.; Bonek, E. Experimental Study of MIMO Channel Statistics and Capacity Via the Virtual Channel Representation; Technical Report; University of Wisconsin-Madison: Madison, WI, USA, 2007; Volume 5, pp. 10–15. [Google Scholar]
- Hugl, K.; Kalliola, K.; Laurila, J. Spatial reciprocity of uplink and downlink radio channels in FDD systems. In Proceedings of the COST 273 Technical Document TD, Citeseer, Espoo, Finland, 30–31 May 2002; Volume 273, p. 66. [Google Scholar]
- Liu, Z.; Zhang, L.; Ding, Z. Exploiting Bi-Directional Channel Reciprocity in Deep Learning for Low Rate Massive MIMO CSI Feedback. IEEE Wirel. Commun. Lett. 2019, 8, 889–892. [Google Scholar] [CrossRef]
- Trabelsi, C.; Bilaniuk, O.; Zhang, Y.; Serdyuk, D.; Subramanian, S.; Santos, J.F.; Mehri, S.; Rostamzadeh, N.; Bengio, Y.; Pal, C.J. Deep complex networks. arXiv 2017, arXiv:1705.09792. [Google Scholar]
- Ding, X.; Guo, Y.; Ding, G.; Han, J. ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1911–1920. [Google Scholar]
- Yao, H.; Dai, F.; Zhang, S.; Zhang, Y.; Tian, Q.; Xu, C.J.N. DR2-Net: Deep Residual Reconstruction Network for image compressive sensing. arXiv 2017, arXiv:1702.05743. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, L.; Oestges, C.; Poutanen, J.; Haneda, K.; Vainikainen, P.; Quitin, F.; Tufvesson, F.; De Doncker, P. The COST 2100 MIMO channel model. IEEE Wirel. Commun. 2012, 19, 92–99. [Google Scholar] [CrossRef] [Green Version]
Parameters | Indoor | Outdoor | ||
---|---|---|---|---|
Uplink | Downlink | Uplink | Downlink | |
Bandwidth | 20 MHz | 20 MHz | ||
Subcarrier | 1024 | 1024 | ||
Frequency | 5.1 GHz | 5.3 GHz | 260 MHz | 300 MHz |
Optimizer | Adam | Adam | ||
Batch size | 200 | 200 | ||
Training sets | 100,000 | 100,000 | ||
Validation sets | 30,000 | 30,000 | ||
Testing sets | 20,000 | 20,000 |
CR | Original | Single-Resolution | Multi-Resolution |
---|---|---|---|
1/4 | −28.02 | −31.53 | −31.71 |
1/16 | −10.93 | −11.30 | −11.91 |
1/32 | −9.05 | −9.26 | −9.72 |
1/64 | −5.98 | −6.12 | −6.58 |
CR | Original | Asymmetric | Complex | Com + Asy |
---|---|---|---|---|
1/4 | −28.02 | −30.27 | −29.01 | −31.71 |
1/16 | −10.93 | −11.25 | −10.98 | −11.91 |
1/32 | −9.05 | −9.23 | −9.11 | −9.72 |
1/64 | −5.98 | −6.06 | −6.03 | −6.58 |
CR | Method | Indoor | Outdoor | FLOPs | Parameters |
---|---|---|---|---|---|
1/4 | CsiNet | −17.36 | −8.75 | 5.41 M | 2103 K |
CRNet | −24.10 | −12.57 | 24.57 M | 2102 K | |
CLNet | −29.16 | −12.88 | 4.05 M | 2101 K | |
DCRNet | −28.04 | −12.70 | 4.01 M | 2102 K | |
CUNet | −31.71 | −13.83 | 4.62 M | 2102 K | |
1/16 | CsiNet | −8.65 | −4.51 | 3.84 M | 530 K |
CRNet | −10.52 | −5.36 | 23.00 M | / | |
CLNet | −11.15 | −5.73 | 2.48 M | / | |
DCRNet | −11.74 | −5.36 | 2.44 M | 528 K | |
CUNet | −11.91 | −6.69 | 3.16 M | 530 K | |
1/32 | CsiNet | −6.24 | −2.81 | 3.58 M | 268 K |
CRNet | −8.90 | −3.16 | 10.16 M | / | |
CLNet | −8.95 | −3.49 | 2.22 M | / | |
DCRNet | −9.05 | −3.47 | 2.18 M | 266 K | |
CUNet | −9.72 | −3.61 | 2.83 M | 267 K | |
1/64 | CsiNet | −5.84 | −1.93 | 3.45 M | 137 K |
CRNet | −6.23 | −2.19 | 22.61 M | 136 K | |
CLNet | −6.43 | −2.86 | 2.09 M | 135 K | |
DCRNet | / | / | / | / | |
CUNet | −6.58 | −2.97 | 2.51 M | 136 K |
Parameters | Setting | |
---|---|---|
Transmitting antenna | 32 | 64 |
User | 1 | |
Receiving antenna | 8 | |
Modulation | QPSK | |
Antenna spacing | 0.5 |
CR | Method | ||
---|---|---|---|
1/4 | CsiNet | −16.13 | −17.53 |
CUNet | −19.77 | −20.01 | |
1/16 | CsiNet | −10.06 | −10.81 |
CUNet | −11.08 | −11.36 | |
1/32 | CsiNet | −6.11 | −8.04 |
CUNet | −6.30 | −8.33 | |
1/64 | CsiNet | −4.38 | −6.17 |
CUNet | −4.42 | −6.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Sun, J.; Wang, P. Uplink Assisted MIMO Channel Feedback Method Based on Deep Learning. Entropy 2023, 25, 1131. https://doi.org/10.3390/e25081131
Liu Q, Sun J, Wang P. Uplink Assisted MIMO Channel Feedback Method Based on Deep Learning. Entropy. 2023; 25(8):1131. https://doi.org/10.3390/e25081131
Chicago/Turabian StyleLiu, Qingli, Jiaxu Sun, and Peiling Wang. 2023. "Uplink Assisted MIMO Channel Feedback Method Based on Deep Learning" Entropy 25, no. 8: 1131. https://doi.org/10.3390/e25081131
APA StyleLiu, Q., Sun, J., & Wang, P. (2023). Uplink Assisted MIMO Channel Feedback Method Based on Deep Learning. Entropy, 25(8), 1131. https://doi.org/10.3390/e25081131