Distributed Consensus Algorithms in Sensor Networks with Higher-Order Topology
Abstract
:1. Introduction
2. Preliminaries and Models
2.1. Problem Formulation
2.2. Hypergraph Social Learning
- Step 1 (Node-to-Edge).
- Step 2 (Edge-to-Node).
- Step 3 (Bayesian update).
- Step 1 (Bayesian update).
- Step 2 (Node-to-Edge).
- Step 3 (Edge-to-Node).
3. Assumptions and Results
4. Numerical Examples and Applications
4.1. Hypergraph Connectivity vs. Convergence
4.2. Hypergraph Structure vs. Convergence Rate
4.3. Hypergraph Structure vs. Graph Structure
4.4. Application to Sensor Cooperative Positioning
4.5. Application to Consensus in Social Network
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Properties of the Matrix C
Appendix A.1. Aperiodicity
Appendix A.2. Irreducibility
References
- Olfati-Saber, R.; Franco, E.; Frazzoli, E.; Shamma, J.S. Belief consensus and distributed hypothesis testing in sensor networks. In Proceedings of the Networked Embedded Sensing and Control: Workshop NESC’05, University of Notre Dame, Notre Dame, IN, USA, 17–18 October 2005; Springer: Berlin/Heidelberg, Germany, 2006; pp. 169–182. [Google Scholar]
- Antonio, P.; Grimaccia, F.; Mussetta, M. Architecture and methods for innovative heterogeneous wireless sensor network applications. Remote Sens. 2012, 4, 1146–1161. [Google Scholar] [CrossRef] [Green Version]
- Tenney, R.R.; Sandell, N.R. Detection with distributed sensors. IEEE Trans. Aerosp. Electron. Syst. 1981, AES-17, 501–510. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, R.; Kasetkasem, T.; Varshney, P.K. Channel aware decision fusion in wireless sensor networks. IEEE Trans. Signal Process. 2004, 52, 3454–3458. [Google Scholar] [CrossRef]
- Alanyali, M.; Venkatesh, S.; Savas, O.; Aeron, S. Distributed Bayesian hypothesis testing in sensor networks. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 6, pp. 5369–5374. [Google Scholar]
- Chakrabarty, K.; Iyengar, S.S.; Qi, H.; Cho, E. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Comput. 2002, 51, 1448–1453. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Teng, W.; Zhang, Y.; Yu, Y.; Chen, L.; Chen, R.; Li, Q. Autonomous Multi-Floor Localization Based on Smartphone-Integrated Sensors and Pedestrian Indoor Network. Remote Sens. 2023, 15, 2933. [Google Scholar] [CrossRef]
- Kar, S.; Moura, J.M. Distributed consensus algorithms in sensor networks: Quantized data and random link failures. IEEE Trans. Signal Process. 2009, 58, 1383–1400. [Google Scholar] [CrossRef] [Green Version]
- Chong, C.Y.; Kumar, S.P. Sensor networks: Evolution, opportunities, and challenges. Proc. IEEE 2003, 91, 1247–1256. [Google Scholar] [CrossRef]
- Leng, S.; Aihara, K. Common stochastic inputs induce neuronal transient synchronization with partial reset. Neural Netw. 2020, 128, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Chamberland, J.F.; Veeravalli, V.V. Decentralized detection in sensor networks. IEEE Trans. Signal Process. 2003, 51, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Borkar, V.; Varaiya, P. Asymptotic agreement in distributed estimation. IEEE Trans. Autom. Control 1982, 27, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Appadwedula, S.; Veeravalli, V.V.; Jones, D.L. Energy-efficient detection in sensor networks. IEEE J. Sel. Areas Commun. 2005, 23, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Jadbabaie, A.; Molavi, P.; Sandroni, A.; Tahbaz-Salehi, A. Non-Bayesian social learning. Games Econ. Behav. 2012, 76, 210–225. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.V. A simple model of herd behavior. Q. J. Econ. 1992, 107, 797–817. [Google Scholar] [CrossRef] [Green Version]
- Bikhchandani, S.; Hirshleifer, D.; Welch, I. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ. 1992, 100, 992–1026. [Google Scholar] [CrossRef]
- Smith, L.; Sørensen, P. Pathological outcomes of observational learning. Econometrica 2000, 68, 371–398. [Google Scholar] [CrossRef] [Green Version]
- Gale, D.; Kariv, S. Bayesian learning in social networks. Games Econ. Behav. 2003, 45, 329–346. [Google Scholar] [CrossRef]
- Bordignon, V.; Vlaski, S.; Matta, V.; Sayed, A.H. Learning from heterogeneous data based on social interactions over graphs. IEEE Trans. Inf. Theory 2022, 69, 3347–3371. [Google Scholar] [CrossRef]
- Bordignon, V.; Matta, V.; Sayed, A.H. Partial information sharing over social learning networks. IEEE Trans. Inf. Theory 2022, 69, 2033–2058. [Google Scholar] [CrossRef]
- Hare, J.Z.; Uribe, C.A.; Kaplan, L.; Jadbabaie, A. Non-Bayesian social learning with uncertain models. IEEE Trans. Signal Process. 2020, 68, 4178–4193. [Google Scholar] [CrossRef]
- Ntemos, K.; Bordignon, V.; Vlaski, S.; Sayed, A.H. Social Learning with Disparate Hypotheses. In Proceedings of the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022; pp. 2171–2175. [Google Scholar]
- Molavi, P.; Tahbaz-Salehi, A.; Jadbabaie, A. Foundations of Non-Bayesian Social Learning; Columbia Business School Research Paper; Columbia Business School: New York, NY, USA, 2017. [Google Scholar]
- Molavi, P.; Rad, K.R.; Tahbaz-Salehi, A.; Jadbabaie, A. On consensus and exponentially fast social learning. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 2165–2170. [Google Scholar]
- Rad, K.R.; Tahbaz-Salehi, A. Distributed parameter estimation in networks. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5050–5055. [Google Scholar]
- Kar, S.; Moura, J.M.; Ramanan, K. Distributed parameter estimation in sensor networks: Nonlinear observation models and imperfect communication. IEEE Trans. Inf. Theory 2012, 58, 3575–3605. [Google Scholar] [CrossRef] [Green Version]
- Nedić, A.; Olshevsky, A.; Uribe, C.A. Nonasymptotic convergence rates for cooperative learning over time-varying directed graphs. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 5884–5889. [Google Scholar]
- Nedić, A.; Olshevsky, A.; Uribe, C.A. Fast convergence rates for distributed non-Bayesian learning. IEEE Trans. Autom. Control 2017, 62, 5538–5553. [Google Scholar] [CrossRef]
- Lalitha, A.; Sarwate, A.; Javidi, T. Social learning and distributed hypothesis testing. IEEE Int. Symp. Inf. Theory 2014, 64, 6161–6179. [Google Scholar] [CrossRef] [Green Version]
- Salami, H.; Ying, B.; Sayed, A.H. Social learning over weakly connected graphs. IEEE Trans. Signal Inf. Process. Netw. 2017, 3, 222–238. [Google Scholar] [CrossRef]
- Liu, Q.; Fang, A.; Wang, L.; Wang, X. Social learning with time-varying weights. J. Syst. Sci. Complex. 2014, 27, 581–593. [Google Scholar] [CrossRef]
- Bordignon, V.; Matta, V.; Sayed, A.H. Adaptive social learning. IEEE Trans. Inf. Theory 2021, 67, 6053–6081. [Google Scholar] [CrossRef]
- Sui, D.; Guan, C.; Gan, Z.; Lin, W.; Leng, S. Tuning Convergence Rate via Non-Bayesian Social Learning: A Trade-Off between Internal Belief and External Information. In Proceedings of the 2023 62nd IEEE Conference on Decision and Control (CDC), Marina Bay Sands, Singapore, 13–15 December 2023. accepted. [Google Scholar]
- Olfati-Saber, R.; Murray, R.M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 2004, 49, 1520–1533. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Moura, J.M. Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise. IEEE Trans. Signal Process. 2008, 57, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.D.; Ye, M. Recent advances in the modelling and analysis of opinion dynamics on influence networks. Int. J. Autom. Comput. 2019, 16, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Proskurnikov, A.V.; Tempo, R. A tutorial on modeling and analysis of dynamic social networks. Part I. Annu. Rev. Control 2017, 43, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.G. Network Science: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ha, Y.; Guo, Y.; Lin, W. Non-Bayesian social learning model with periodically switching structures. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 043137. [Google Scholar] [CrossRef]
- Bairey, E.; Kelsic, E.D.; Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 2016, 7, 12285. [Google Scholar] [CrossRef]
- Patania, A.; Petri, G.; Vaccarino, F. The shape of collaborations. EPJ Data Sci. 2017, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Lambiotte, R.; Rosvall, M.; Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 2019, 15, 313–320. [Google Scholar] [CrossRef]
- Qiu, X.; Yang, L.; Guan, C.; Leng, S. Closed-loop control of higher-order complex networks: Finite-time and pinning strategies. Chaos Solitons Fractals 2023, 173, 113677. [Google Scholar] [CrossRef]
- Estrada, E.; Ross, G.J. Centralities in simplicial complexes. Applications to protein interaction networks. J. Theor. Biol. 2018, 438, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Lin, W.; Leng, S. Conditional cross-map-based technique: From pairwise dynamical causality to causal network reconstruction. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 063101. [Google Scholar] [CrossRef]
- Zhang, H.; Song, L.; Han, Z.; Zhang, Y. Hypergraph Theory in Wireless Communication Networks; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Yan, M.; Lam, K.Y.; Han, S.; Chan, E.; Chen, Q.; Fan, P.; Chen, D.; Nixon, M. Hypergraph-based data link layer scheduling for reliable packet delivery in wireless sensing and control networks with end-to-end delay constraints. Inf. Sci. 2014, 278, 34–55. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, J.; Wang, X. Distributed detection via Bayesian updates and consensus. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 6992–6997. [Google Scholar]
- Feng, Y.; You, H.; Zhang, Z.; Ji, R.; Gao, Y. Hypergraph neural networks. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3558–3565. [Google Scholar] [CrossRef] [Green Version]
- Zou, M.; Gan, Z.; Cao, R.; Guan, C.; Leng, S. Similarity-navigated graph neural networks for node classification. Inf. Sci. 2023, 633, 41–69. [Google Scholar] [CrossRef]
- Hoel, P.G.; Port, S.C.; Stone, C.J. Introduction to Stochastic Processes; Waveland Press: Long Grove, IL, USA, 1986. [Google Scholar]
- Surana, A.; Chen, C.; Rajapakse, I. Hypergraph similarity measures. IEEE Trans. Netw. Sci. Eng. 2022, 10, 658–674. [Google Scholar] [CrossRef]
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ma, C.; Chen, H.S.; Lai, Y.C.; Zhang, H.F. Full reconstruction of simplicial complexes from binary contagion and Ising data. Nat. Commun. 2022, 13, 3043. [Google Scholar] [CrossRef]
- Cao, R.; Guan, C.; Gan, Z.; Leng, S. Reviving the Dynamics of Attacked Reservoir Computers. Entropy 2023, 25, 515. [Google Scholar] [CrossRef]
- Liang, X.; Zhong, Y.; Tang, J.; Liu, Z.; Yao, P.; Sun, K.; Zhang, Q.; Gao, B.; Heidari, H.; Qian, H.; et al. Rotating neurons for all-analog implementation of cyclic reservoir computing. Nat. Commun. 2022, 13, 1549. [Google Scholar] [CrossRef]
- Su, L.; Vaidya, N.H. Defending non-Bayesian learning against adversarial attacks. Distrib. Comput. 2019, 32, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Hare, J.Z.; Uribe, C.A.; Kaplan, L.M.; Jadbabaie, A. On malicious agents in non-Bayesian social learning with uncertain models. In Proceedings of the 2019 22nd International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2–5 July 2019; pp. 1–8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Shi, W.; Sui, D.; Leng, S. Distributed Consensus Algorithms in Sensor Networks with Higher-Order Topology. Entropy 2023, 25, 1200. https://doi.org/10.3390/e25081200
Chen Q, Shi W, Sui D, Leng S. Distributed Consensus Algorithms in Sensor Networks with Higher-Order Topology. Entropy. 2023; 25(8):1200. https://doi.org/10.3390/e25081200
Chicago/Turabian StyleChen, Qianyi, Wenyuan Shi, Dongyan Sui, and Siyang Leng. 2023. "Distributed Consensus Algorithms in Sensor Networks with Higher-Order Topology" Entropy 25, no. 8: 1200. https://doi.org/10.3390/e25081200
APA StyleChen, Q., Shi, W., Sui, D., & Leng, S. (2023). Distributed Consensus Algorithms in Sensor Networks with Higher-Order Topology. Entropy, 25(8), 1200. https://doi.org/10.3390/e25081200