Nucleation Process in Explosive Boiling Phenomena of Water on Micro-Platinum Wire
Abstract
:1. Introduction
2. Bubble Nucleation Theory and Model
2.1. Classical Theory of Bubble Nucleation
2.2. Molecular Interaction Model for Vapor Bubble Nucleation
3. Nucleation on Atomic-Scale Smooth Surfaces
4. Bubble Dynamics
5. Explosive Boiling on Ultra-Thin Platinum Wire
6. Results and Discussion
Nucleation Temperature (K) | 548.2 K (Tr = 0.847) | 566.2 K (Tr = 0.875) | 576.2 K (Tr = 0.890) |
---|---|---|---|
Density (kg/m3) | 759.0 | 726.0 | 706.0 |
Surface tension (N/m) | 0.0201 | 0.0159 | 0.0136 |
Saturation pressure (bar) | 59.42 | 77.76 | 89.49 |
Number density (molecules/(μm)3) | 2.539 × 1010 | 2.428 × 1010 | 2.360 × 1010 |
Critical radius (nm), Equation (1) | 6.89 | 4.15 | 3.08 |
Nucleation rate by classical nucleation theory (bubbles/cm3s), Equation (4) | 7.7 × 10−196 | 1.65 × 10−30 | 3.8 × 104 |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Alg | liquid–gas surface area |
Asg | solid–gas surface area |
D | diameter of Pt wire |
dm | average distance between molecules |
dw | van der Waals’ diameter of liquid molecules |
EI | ionization potential |
Fnc | free energy needed to form a critical cluster |
FRc | free energy needed to form a critical bubble |
JCNT | nucleation rate in classical nucleation theory, bubbles/(cm3s) |
JCNT,sur | surface nucleation rate in classical nucleation theory, bubbles/(cm2s) |
Jsur | surface nucleation rate of the critical cluster per unit surface, clusters/(cm2s) |
Jvol | volume nucleation rate of the critical cluster per unit volume, clusters/(cm3s) |
kB | Boltzmann constant |
kg | heat conductivity of gas |
kl | heat conductivity of liquid |
lL | evaporation layer |
m | mass of molecule |
nc | number of molecules in a critical cluster |
N | number density or number of molecules |
Pe | equilibrium pressure |
pfar | far field pressure |
Pf | final pressure |
Pn | pressure inside the cluster |
Psat | vapor pressure at given temperature |
Pv | vapor pressure |
P∞ | ambient pressure |
r | distance from the bubble center |
R | radius of curvature |
Rb | bubble radius |
Ub | velocity of bubble wall |
tnucl | nucleation time |
T∞ | temperature of liquid |
Tbl | temperature at the bubble wall |
Tbo | temperature at the bubble center |
Tc | critical temperature of liquid |
Tf | melting temperature of liquid |
Tr | reduced temperature, T/Tc |
Ts | superheat limit of liquid |
Vd | droplet volume |
Vm | effective molecular volume of liquid |
Z | coordination number |
Zf | Zeldovich nonequilibrium factor |
Greek letters | |
α | polarizability of a liquid molecule |
αl | heat diffusivity of liquid |
β | accommodation coefficient |
γ | specific heat ratio of vapor inside bubble |
δ | thickness of the thermal boundary layer adjacent to the bubble wall |
ΔHvap | enthalpy of evaporation |
ΔHf | enthalpy of fusion |
εo | potential parameter of London dispersion attraction |
εm | energy needed to separate a pair of molecules |
μ | dynamic viscosity |
μm | chemical potential in metastable state |
μs | chemical potential in saturated state |
θ | contact angle |
critical density of liquid | |
density of liquid | |
ambient density | |
σ | interfacial tension |
References
- von Stalen, S.; Cole, R. Boiling Phenomena; Hemisphere Publishing Cooperation: New York, NY, USA, 1979. [Google Scholar]
- Clark, H.B.; Strenge, P.S.; Westwater, J.W. Active sites for nucleate boiling. CEP Symp. Ser. 1959, 55, 103–110. [Google Scholar]
- Cornwell, K. Naturally formed boiling site cavities. Lett. Heat Mass Transfer. 1977, 4, 63–72. [Google Scholar] [CrossRef]
- Nail, J.P.; Vachon, R.I.; Morehouse, J. An SEM study of nucleation sites in pool boiling from 304 stainless steel. Trans. ASME J. Heat Transf. 1974, C96, 132–137. [Google Scholar] [CrossRef]
- Bergles, A.E.; Rohsenow, W.M. The determination of forced-convection surface-boiling heat transfer. Trans. ASME J. Heat Transf. 1964, C86, 365–372. [Google Scholar] [CrossRef]
- Trefethen, L. Nucleation at a liquid-liquid interface. J. Appl. Phys. 1957, 28, 923–924. [Google Scholar] [CrossRef]
- Wakeshima, H.; Takata, K. On the limit of superheat. J. Phys. Soc. Jap. 1958, 13, 1398–1403. [Google Scholar] [CrossRef]
- Moore, G.R. Vaporization of superheated liquids. AIChE J. 1959, 5, 458–466. [Google Scholar] [CrossRef]
- Döering, W. Die Überhitzungsgrenze und Zerreiβfestigkeit von Flϋssigkeiten. Z. Phys. Chem. 1937, 36, 1398–1403. [Google Scholar]
- Lin, L.; Pisano, A.P.; Carey, V.P. Thermal bubble formation on polysilicon micro resisters. ASME J. Heat Trans. 1998, 20, 735–742. [Google Scholar] [CrossRef]
- Blander, M.; Katz, J. Bubble nucleation in liquids. AIChE J. 1975, 21, 833–848. [Google Scholar] [CrossRef]
- Blander, M.; Hengstenberg, D.; Katz, J.L. Bubble nucleation in n-pentane, n-hexane, n-pentane+hexdecane mixture, and water. J. Phys. Chem. 1971, 75, 3613–3619. [Google Scholar] [CrossRef]
- Eberhart, J.G.; Kremsner, W.; Blander, M. Metastability limits of superheated liquids. J. Colloid Interface Sci. 1975, 50, 369–378. [Google Scholar] [CrossRef]
- Porteus, M.; Blander, M. Limit of superheat and explosive boiling of light hydrocarbons, halocarbons, and hydrocarbon mixtures. AIChE J. 1975, 21, 560–566. [Google Scholar] [CrossRef]
- Patrick-Yeboch, J.R.; Reid, R.C. Superheat-limit temperatures of polar liquids. Ind. Eng. Chem. Fundam. 1981, 20, 315–317. [Google Scholar] [CrossRef]
- Eberhart, J.G.; Hathway, E.J.; Blander, M. The limit of superheat of methanol and ethanol. J. Colloid Interface Sci. 1973, 44, 389–390. [Google Scholar] [CrossRef]
- Shepherd, J.E.; Sturtevant, B. Rapid evaporation at the superheat limit. J. Fluid Mech. 1982, 121, 379–402. [Google Scholar] [CrossRef]
- McCann, H.; Clarke, L.J.; Masters, A.P. An experimental study of vapor growth at the superheat limit temperature. Int. J. Heat Mass Transfer. 1989, 32, 1077–1093. [Google Scholar] [CrossRef]
- Apfel, R.E. Water superheated to 279.5 ℃ at atmospheric pressure. Nat. Phys. Sci. 1972, 238, 63–64. [Google Scholar] [CrossRef]
- Kwak, H.; Lee, S. Homogeneous bubble nucleation predicted by molecular interaction model. ASME J. Heat Trans. 1991, 113, 714–721. [Google Scholar] [CrossRef]
- Felix, M.P.; Ellis, E.T. Laser-induced liquid breakdown-a step by step account. Appl. Phys. Lett. 1971, 19, 484–486. [Google Scholar] [CrossRef]
- Lauterborn, W. High-speed photography of laser-induced breakdown in liquid. Appl. Phys. Lett. 1972, 21, 27–29. [Google Scholar] [CrossRef]
- Prishivalko, A.P. Heating and destruction of water drops on exposure to radiation with inhomogeneous internal heat evolution. Soviet Phys. J. 1983, 26, 142–148. [Google Scholar] [CrossRef]
- Byun, K.T.; Kwak, H. A model of laser-induced cavitation. Jap. J. Appl. Phys. 2004, 43, 621–630. [Google Scholar] [CrossRef]
- Nagashima, G.; Levine, E.V.; Hoogerhide, D.P.; Burns, M.M.; Golovchenko, J.A. Superheating and homogeneous single bubble nucleation in a solid-state nanopore. Phys. Rev. Lett. 2014, 113, 024506. [Google Scholar] [CrossRef]
- Skripov, V.P.; Pavlov, P.A. Explosive boiling of liquids and fluctuation nucleus formation. High Temp. (USSR) 1970, 8, 782–787. [Google Scholar]
- Derewnicki, K.P. Experimental studies of heat transfer and vapour formation in fast transient boiling. Int. J. Heat Mass Transfer. 1985, 28, 2085–2092. [Google Scholar] [CrossRef]
- Glod, S.; Poulikakoa, D.; Zhao, Z.; Yadigaroglu, G. An investigation of microscale explosive vaporization of water on an ultrathin Pt wire. Int. J. Heat Mass Trans. 2002, 45, 367–379. [Google Scholar] [CrossRef]
- Asai, A.; Hirasawa, S.; Endo, I. Bubble generation mechanism in the bubble jet recording process. J. Imaging Technol. 1988, 14, 120–124. [Google Scholar]
- Iida, Y.; Okuyama, K.; Sakurai, K. Boiling nucleation on a very small film heater subjected to extremely rapid heating. Int. J. Heat Mass Transfer. 1994, 37, 2771–2780. [Google Scholar] [CrossRef]
- Nielson, N.J. History of the inkjet printer head development. HP J. 1985, 35, 4–10. [Google Scholar]
- Lin, L.; Pisano, A.P. Bubble forming on a micro line heater. Micromechanical Sens. Actuators Syst. 1991, 32, 147–163. [Google Scholar]
- Avedisian, C.T.; Osborne, W.S.; McLeod, F.D.; Curley, C.M. Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water. Proc. R. Soc. Lond. A 1999, 455, 3875–3899. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, H.C.; Jung, J.Y.; Kwak, H. Bubble nucleation on micro line heater. ASME J. Heat. Trans. 2003, 125, 687–692. [Google Scholar] [CrossRef]
- Ching, E.J.; Avedisian, C.T.; Cavicchi, R.C.; Chung, D.H.; Rah, K.J.; Carrier, M.J. Rapid evaporation at the superheat limit of methanol, ethanol, butanol and n-heptane on platinum films supported by low stress SiN membranes. Int. J. Heat Mass Trans. 2016, 101, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Kozulin, I.; Kuznetsov, V. Dynamics of explosive vaporization in metastable liquids under pulse heating. AIP Conf. Proc. 2018, 1939, 020045. [Google Scholar]
- Jung, J.; Kwak, H. Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness. Int. J. Heat Mass Transfer. 2006, 49, 4543–4551. [Google Scholar] [CrossRef]
- Kotaidis, V.; Dahmen, C.; von Plessen, G.; Springer, F.; Plech, A. Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. J. Chem. Phys. 2006, 124, 184702. [Google Scholar] [CrossRef] [PubMed]
- Kotaidis, V.; Plech, A. Cavitation dynamics on the nanoscale. Appl. Phys. Lett. 2005, 87, 213102. [Google Scholar] [CrossRef]
- Kwak, H.; Oh, J.; Yoo, Y.; Mahmood, S. Bubble formation on the surface of laser-irradiated nanosized particles. ASME J. Heat Trans. 2014, 136, 081501. [Google Scholar] [CrossRef]
- Oh, J.; Yoo, Y.; Seung, S.; Kwak, H. Laser-induced bubble formation on a micro gold particle levitated in water under ultrasonic field. Exp. Therm. Fluid Sci. 2018, 98, 285–291. [Google Scholar] [CrossRef]
- Dou, Y.; Zhigilei, L.V.; Winograd, N.; Garrison, B.J. Explosive boiling of water films adjacent to heater surface: A micrscopic description. J. Phys. Chem. A 2001, 105, 2748–2755. [Google Scholar] [CrossRef]
- Jarvis, T.J.; Donohue, M.D.; Katz, J.L. Bubble nucleation mechanisms in liquid droplet. J. Colloid Interface Sci. 1975, 50, 359–368. [Google Scholar] [CrossRef]
- Gibbs, J.W. The Scientific Papers of J. Willard Gibbs, Ph. D., LL.D. I. Thermodynamics; Dover: New York, NY, USA, 1961; pp. 219–331. [Google Scholar]
- Skripov, V.P. Metastable Liquids; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Volmer, M.; Weber, A. Keimbildung in Uebersaettingten Gebilden. Z. Fur Phys. Chem. 1926, 119, 227–301. [Google Scholar]
- Zeldovich, J.B. On the theory of new phase formation: Cavitation. Acta Physicochemica URSS 1943, 18, 1–22. [Google Scholar]
- Debenedetti, P.G. Metastable Liquids; Princeton University Press: Princeton, NJ, USA, 1996; pp. 176–181. [Google Scholar]
- Sinitsyn, E.N.; Skripov, V.P. Kinetics of nucleation in superheated liquids. Russ. J. Phys. Chem. 1968, 42, 440–443. [Google Scholar]
- Kwak, H.; Panton, R.L. Tensile strength of simple liquids predicted by a model of molecular interactions. J. Phys. D Appl. Phys. 1985, 18, 647–659. [Google Scholar] [CrossRef]
- Streitwieser, A.; Heathcock, C.H. Introduction to Organic Chemistry; Macmillan: London, UK, 1981; pp. 147–149. [Google Scholar]
- Fowkes, F.M. Attractive forces at interfaces. Ind. Eng. Chem. 1964, 56, 40–52. [Google Scholar] [CrossRef]
- Prausnitz, J.M. Molecular Thermodynamics of Fluid-Phase Equilibria; Prentice-Hall: New York, NY, USA, 1969. [Google Scholar]
- Feynman, R.P. Statistical Physics; Benjamin: New York, NY, USA, 1972; p. 125. [Google Scholar]
- Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: New York, NY, USA, 1946. [Google Scholar]
- Feder, J.; Russel, K.C.; Lothe, J.; Pound, G.M. Homogeneous nucleation and growth of droplet in vapors. Adv. Phys. 1966, 15, 1111–1178. [Google Scholar] [CrossRef]
- Nam, Y.; Ju, Y.S. Bubble nucleation on hydrobobic islands provides evidence to anomalously high contact angles of nanobubbles. Appl. Phys. Lett. 2008, 93, 103115. [Google Scholar] [CrossRef]
- Kwak, H.; Oh, S.; Park, C. Bubble dynamics on the evolving bubble formed from the droplet at the superheat limit. Int. J. Heat Mass Trans. 1995, 38, 1709–1718. [Google Scholar] [CrossRef]
- Young, F.R. Cavitation; McGraw-Hill Book, Co.: New York, NY, USA, 1989. [Google Scholar]
- Theofanous, T.; Biasi, L.; Isbin, H.S. A theoretical study on bubble growth in constant and time-dependent pressure fields. Chem. Eng. Sci. 1969, 24, 885–897. [Google Scholar] [CrossRef]
- Ross, D. Mechanism of Underwater Noise; Pergamon Press: Oxford, UK, 1976; p. 66. [Google Scholar]
- Vargaftik, N.B.; Volkov, B.N.; Voljak, L.D. International tables of the surface tension of water. J. Phys. Chem. Ref. Data 1983, 12, 817–820. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, B.; An, S.; Lee, W.; Kwak, H.; Jhe, W. Adhesive force measurement of steady-state water nano-menisus: Effective surface tension at nanoscale. Sci. Rep. 2018, 8, 8462. [Google Scholar] [CrossRef]
Nucleation Temperature (K) | 566.2 K | 576.2 K |
---|---|---|
Nucleation rate (clusters/(μm3μs)) | 0.83 × 1011 | 2.15 × 1011 |
Number of molecules in the critical cluster | 25.75 | 12.74 |
Evaporation speed of the liquid layer (m/s) | 88.0 | 116.0 |
Total number of molecules involved in the nucleation process | 1.21 × 1012 | 1.27 × 1012 |
Time lag for nucleation (μs) | 0.0184 | 0.00572 |
Pressure inside bubble (bar) | 77.7 | 89.5 |
Pressure of evaporated state (bar) | 905.0 | 827.0 |
Nucleation Process | Equation (13) | Equation (24) |
---|---|---|
Nucleation rate (clusters/(μm3μs)) | 4.26 × 109 (clusters/(μm3μs)) | 3.16 × 106 (clusters/(μm2μs)) |
Number of molecules in the critical cluster | 88.4 | 74.6 |
Evaporation speed of the liquid layer (m/s) | 14.8 | 27.3 |
Total number of molecules involved in the nucleation process | 1.2 × 1012 | 1.2 × 1012 |
Time lag for nucleation (μs) | 0.142 | 0.422 |
Pressure inside bubble (bar) | 59.41 | 59.41 |
Pressure of evaporated state (bar) | 1040 | 1040 |
Nucleation Temperature (K) | 449.4 K (Tr = 0.832) | 472.0 K (Tr = 0.874) | 484.3 K (Tr = 0.897) |
---|---|---|---|
Density (kg/m3) | 527.0 | 495.0 | 476.0 |
Surface tension (N/m) | 0.0059 | 0.0042 | 0.0033 |
Saturation pressure (bar) | 6.19 | 9.45 | 11.84 |
Nucleation rate by molecular interaction model (clusters/cm2s) | 1.6 × 1015 | 2.3 × 1017 | 6.9 × 1017 |
Nucleation rate by classical nucleation theory (bubbles/cm2s) | 0.0 | 2.3 × 10−73 | 1.6 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, Y.; Kwak, H.-Y. Nucleation Process in Explosive Boiling Phenomena of Water on Micro-Platinum Wire. Entropy 2024, 26, 35. https://doi.org/10.3390/e26010035
Yoo Y, Kwak H-Y. Nucleation Process in Explosive Boiling Phenomena of Water on Micro-Platinum Wire. Entropy. 2024; 26(1):35. https://doi.org/10.3390/e26010035
Chicago/Turabian StyleYoo, Yungpil, and Ho-Young Kwak. 2024. "Nucleation Process in Explosive Boiling Phenomena of Water on Micro-Platinum Wire" Entropy 26, no. 1: 35. https://doi.org/10.3390/e26010035
APA StyleYoo, Y., & Kwak, H. -Y. (2024). Nucleation Process in Explosive Boiling Phenomena of Water on Micro-Platinum Wire. Entropy, 26(1), 35. https://doi.org/10.3390/e26010035