Linear Bayesian Estimation of Misrecorded Poisson Distribution
Abstract
:1. Introduction
2. Misrecorded Poisson Distribution
3. Linear Bayesian Estimation
3.1. The Expressions of Linear Bayesian Estimation
3.2. The Superiority of Linear Bayesian Estimation
4. Numerical Simulation and Empirical Application
4.1. Numerical Simulation
4.2. Empirical Application
4.2.1. Empirical Application 1
4.2.2. Empirical Application 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cohen, J.R.; Clifford, A. Estimating the parameters of a modified Poisson distribution. J. Am. Stat. Assoc. 1960, 55, 139–143. [Google Scholar] [CrossRef]
- Dorris, A.L.; Foote, B.L. Inspection errors and statistical quality control: A survey. AIIE Trans. 1978, 10, 184–192. [Google Scholar] [CrossRef]
- Gupta, P.L.; Gupta, R.C.; Tripathi, R.C. Analysis of zero-adjusted count data. Comput. Stat. Data Anal. 1996, 23, 207–218. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, G.L.; Ng, K.W. Properties of the zero-and-one inflated Poisson distribution and likelihood-based inference methods. Stat. Its Interface 2016, 9, 11–32. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, G.L.; Tang, M.L. A new multivariate zero-adjusted Poisson model with applications to biomedicine. Biom. J. 2019, 61, 1340–1370. [Google Scholar] [CrossRef] [PubMed]
- Bagui, S.C.; Mehra, K.L. The Poisson Distribution and Its Convergence to the Normal Distribution. Int. J. Stat. Sci. 2020, 36, 37–56. [Google Scholar]
- Zhang, Q.; Lipani, A.; Kirnap, O.; Yilmaz, E. Self-Attentive Hawkes Process. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020; Volume 119, pp. 11183–11193. [Google Scholar]
- Wang, L.W.; Zhang, L. Hawkes Processes for Understanding Heterogeneity in Information Propagation on Twitter; School of Science, Beijing University of Posts and Telecommunications: Beijing, China, 2022. [Google Scholar]
- Lamprinakou, S.; Gandy, A.; McCoy, E. Using a latent Hawkes process for epidemiological modelling. PLoS ONE 2023, 18, e0281370. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Study on a Class of Mixed Poisson and Its Zero-Inflated Distribution. Master’s Thesis, Chang’an University, Chang’an, China, 2022. [Google Scholar]
- Johnson, N.L. Univariate Discrete Distributions; John Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Djuraš, G. Generalized Poisson Models for Word Length Frequencies in Texts of Slavic Languages; Graz University of Technology Press: Graz, Austria, 2012. [Google Scholar]
- Tuwei, K.E. Power Series Distribution Sand Zero-Inflated Models; University of Nairobi Press: Nairobi, Kenya, 2014. [Google Scholar]
- Angers, J.F.; Biswas, A. A Bayesian analysis of zero-inflated generalized Poisson model. Comput. Stat. Data Anal. 2003, 42, 37–46. [Google Scholar] [CrossRef]
- Rodrigues, J. Bayesian Analysis of Zero-Inflated Distributions. Commun. Stat.—Theory Methods 2003, 32, 281–289. [Google Scholar] [CrossRef]
- Wang, Y.Q. Bayesian Estimation Based on Zero-and-One-Inflated Poisson Regression Model. Master’s Thesis, Central China Normal University, Wuhan, China, 2022. [Google Scholar]
- Hartigan, J.A. Linear Bayesian Methods. J. R. Stat. Soc. Ser. B Methodol. 1969, 31, 446–454. [Google Scholar] [CrossRef]
- Rao, C.R. Linear Statistical Inference and Its Applications, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1973. [Google Scholar]
- LaMotte, L.R. Bayes linear estimators. Technometrics 1978, 20, 281–290. [Google Scholar] [CrossRef]
- Hesselager, O. Rates of risk convergence of empirical linear Bayes estimators. Scand. Actuar. J. 1992, 1, 88–94. [Google Scholar] [CrossRef]
- Goldstein, M. General Variance Modifications for Linear Bayes Estimators. J. Am. Stat. Assoc. 1983, 78, 616–618. [Google Scholar] [CrossRef]
- Hoffmann, K. A subclass of Bayes linear estimators that are minimax. Acta Appl. Math. 1996, 43, 87–95. [Google Scholar] [CrossRef]
- Samaniego, J.F.; Vestrup, V.E. On improving standard estimators via linear empirical Bayes methods. Stat. Probab. Lett. 1999, 44, 309–318. [Google Scholar] [CrossRef]
- Wei, L.S.; Zhang, W.P. The superiorities of Bayes Linear Minimum Risk Estimation in Linear Model. Commun. Stat. Theory Methods 2007, 36, 917–926. [Google Scholar] [CrossRef]
- Lin, P.P. Linear Bayesian Estimation under Constraint Conditions. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2018. [Google Scholar]
- Tao, R.F. Linear Bayesian Estimation of Parameters in Pareto Distribution. Master’s Thesis, Jiangxi Normal University, Beijing, China, 2019. [Google Scholar]
- Liu, X.H. Linear Bayes Estimators in Singular Linear Model. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2022. [Google Scholar]
- Chen, T. Linear Bayes Estimator of the Extreme Value Distribution Based on Type Ⅱ Censored Samples. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2021. [Google Scholar]
- von Bortkiewicz, L. Das Gesetz der Kleinen Zahlen; Teubner Press: Leipzig, Germany, 1898. [Google Scholar]
- Yang, C.Q. Investigation and Analysis of Traffic Flow in Urban Road Intersection. Master’s Thesis, Guangzhou University, Guangzhou, China, 2018. [Google Scholar]
= 200 | 0.7 | 0.7 | 0.704053 | 0.694272 | 0.703608 | 0.694273 |
0.9 | 0.712559 | 0.893031 | 0.711961 | 0.893031 | ||
0.9 | 0.7 | 0.89567 | 0.692927 | 0.895587 | 0.692927 | |
0.9 | 0.897774 | 0.89222 | 0.897602 | 0.89222 | ||
= 800 | 0.7 | 0.7 | 0.702591 | 0.699152 | 0.702557 | 0.699152 |
0.9 | 0.69286 | 0.89726 | 0.692883 | 0.89726 | ||
0.3 | 0.8 | 0.294824 | 0.795203 | 0.294818 | 0.795203 | |
0.8 | 0.3 | 0.794149 | 0.294536 | 0.794162 | 0.294536 |
= 200 | 0.7 | 0.7 | 0.007665 | 0.007364 | 0.001971974 |
0.9 | 0.00576 | 0.005474 | 0.002007057 | ||
0.9 | 0.7 | 0.005215 | 0.005035 | 0.001461555 | |
0.9 | 0.006006 | 0.005752 | 0.001724022 | ||
= 800 | 0.7 | 0.7 | 0.00149 | 0.001474 | 0.000222702 |
0.9 | 0.001428 | 0.001411 | 0.000225155 | ||
0.3 | 0.8 | 0.001506 | 0.001492 | 0.000243135 | |
0.8 | 0.3 | 0.003181 | 0.003162 | 0.000233711 |
Number per Deaths of Army Corps per Year | Number of Observations | |
---|---|---|
Original Data | Altered Data | |
0 | 109 | 129 |
1 | 65 | 45 |
2 | 22 | 22 |
3 | 3 | 3 |
4 | 1 | 1 |
5 | 0 | 0 |
The Number of Passes for Small-Sized Cars | Number of Observations | |
---|---|---|
Original Data | Altered Data | |
0 | 15 | 18 |
1 | 5 | 2 |
2 | 9 | 9 |
3 | 6 | 6 |
4 | 7 | 7 |
5 | 1 | 1 |
6 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Chen, Z.; Li, F. Linear Bayesian Estimation of Misrecorded Poisson Distribution. Entropy 2024, 26, 62. https://doi.org/10.3390/e26010062
Gao H, Chen Z, Li F. Linear Bayesian Estimation of Misrecorded Poisson Distribution. Entropy. 2024; 26(1):62. https://doi.org/10.3390/e26010062
Chicago/Turabian StyleGao, Huiqing, Zhanshou Chen, and Fuxiao Li. 2024. "Linear Bayesian Estimation of Misrecorded Poisson Distribution" Entropy 26, no. 1: 62. https://doi.org/10.3390/e26010062
APA StyleGao, H., Chen, Z., & Li, F. (2024). Linear Bayesian Estimation of Misrecorded Poisson Distribution. Entropy, 26(1), 62. https://doi.org/10.3390/e26010062