Regression of Concurrence via Local Unitary Invariants
Abstract
:1. Introduction
2. LU Invariants of Two-Qubit States
3. Constructing Regression Models
3.1. For Werner States
3.2. For Pure States
3.3. For General Structure States
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Horodecki, R.; Horodecki, P.; Horodecki, M. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 1996, 77, 1413. [Google Scholar] [CrossRef] [PubMed]
- Audenaert, K.; Verstraete, F.; De Moor, B. Variational characterizations of separability and entanglement of formation. Phys. Rev. A 2001, 64, 052304. [Google Scholar] [CrossRef]
- Eisert, J.; Brandao, F.G.; Audenaert, K.M. Quantitative entanglement witnesses. New J. Phys. 2007, 9, 46. [Google Scholar] [CrossRef]
- Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [Google Scholar] [CrossRef]
- Spengler, C.; Huber, M.; Brierley, S.; Adaktylos, T.; Hiesmayr, B.C. Entanglement detection via mutually unbiased bases. Phys. Rev. A 2012, 86, 022311. [Google Scholar] [CrossRef]
- Horodecki, P.; Ekert, A. Method for Direct Detection of Quantum Entanglement. Phys. Rev. Lett. 2002, 89, 127902. [Google Scholar] [CrossRef]
- Pan, W.W.; Xu, X.Y.; Kedem, Y.; Wang, Q.Q.; Chen, Z.; Jan, M.; Sun, K.; Xu, J.S.; Han, Y.J.; Li, C.F.; et al. Direct Measurement of a Nonlocal Entangled Quantum State. Phys. Rev. Lett. 2019, 123, 150402. [Google Scholar] [CrossRef]
- Bennett, C.H.; DiVincenzo, D.P.; Smolin, J.A.; Wootters, W.K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 1996, 54, 3824. [Google Scholar] [CrossRef]
- Życzkowski, K.; Horodecki, P.; Sanpera, A.; Lewenstein, M. Volume of the Set of Separable States. Phys. Rev. A 1998, 58, 883. [Google Scholar] [CrossRef]
- Schumacher, B.; Westmorel, M.D. Relative entropy in quantum information theory. Contemp. Math. 2002, 305, 265–290. [Google Scholar]
- Osterloh, A.; Amico, L.; Falci, G.; Fazio, R. Scaling of entanglement close to a quantum phase transition. Nature 2002, 416, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Vedral, V. Entanglement hits the big time. Nature 2003, 425, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Wootters, W.K. Entanglement of formation and concurrence. Quantum Inf. Comput. 2001, 1, 27–44. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef]
- Steffen, M.; Ansmann, M.; Bialczak, R.C.; Katz, N.; Lucero, E.; McDermott, R.; Neeley, M.; Weig, E.M.; Clel, A.N.; Martinis, J.M. Measurement of the entanglement of two superconducting qubits via state tomography. Science 2006, 313, 1423–1425. [Google Scholar] [CrossRef]
- D’Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. Quantum tomography. Adv. Imaging Electron Phys. 2003, 128, S1076–S5670. [Google Scholar]
- O’Donnell, R.; Wright, J. Efficient quantum tomography. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, Cambridge, MA, USA, 19–21 June 2016; pp. 899–912. [Google Scholar]
- Makhlin, Y. Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations. Quantum Inf. Process. 2002, 4, 243–252. [Google Scholar] [CrossRef]
- Hill, S.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997, 78, 5022. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157. [Google Scholar]
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 1989, 40, 4277. [Google Scholar] [CrossRef]
- Chen, K.; Albeverio, S.; Fei, S.M. Concurrence-based entanglement measure for Werner states. Rep. Math. Phys. 2006, 58, 325–334. [Google Scholar] [CrossRef]
Variant | Formula | Variant | Formula |
---|---|---|---|
, , | |||
, , | |||
, , | |||
LR | Lasso | XGB | LGBM | BP-Net | |
---|---|---|---|---|---|
0.1570 | 0.0477 | 0.0002 | 0.0003 | ||
0.9850 | 0.8779 | 0.9999 | 0.9999 | 0.9995 |
LR | Lasso | XGB | LGBM | BP-Net | |
---|---|---|---|---|---|
0.0005 | 0.0018 | 0.0003 | 0.0003 | 0.0005 | |
0.9452 | 0.8302 | 0.9665 | 0.9717 | 0.9488 |
Model | Hyperparameter | Value |
---|---|---|
XGBoost | Learning Rate | 0.1 |
Max Depth | 7 | |
n_Estimator | 500 | |
LGBM | Learning Rate | 0.1 |
Max Depth | 10 | |
Num Leaves | 50 | |
n_Estimator | 300 |
States | Index | XGB | LGBM | BP-Net |
---|---|---|---|---|
G State | RMSE | 0.0003 | 0.0001 | 0.0004 |
R2 | 0.9664 | 0.9855 | 0.9535 | |
P State | RMSE | |||
R2 | 0.9999 | 0.9999 | 0.9992 | |
W State | RMSE | |||
R2 | 0.9999 | 0.9999 | 0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, W.; Zhang, X.; Wang, J.; Li, L.; Shen, S. Regression of Concurrence via Local Unitary Invariants. Entropy 2024, 26, 917. https://doi.org/10.3390/e26110917
Li M, Wang W, Zhang X, Wang J, Li L, Shen S. Regression of Concurrence via Local Unitary Invariants. Entropy. 2024; 26(11):917. https://doi.org/10.3390/e26110917
Chicago/Turabian StyleLi, Ming, Wenjun Wang, Xiaoyu Zhang, Jing Wang, Lei Li, and Shuqian Shen. 2024. "Regression of Concurrence via Local Unitary Invariants" Entropy 26, no. 11: 917. https://doi.org/10.3390/e26110917
APA StyleLi, M., Wang, W., Zhang, X., Wang, J., Li, L., & Shen, S. (2024). Regression of Concurrence via Local Unitary Invariants. Entropy, 26(11), 917. https://doi.org/10.3390/e26110917