Asymptotic Expansion and Weak Approximation for a Stochastic Control Problem on Path Space
Abstract
:1. Introduction
2. Asymptotic Expansion and Weak Approximation of Stochastic Control Problems
3. Numerical Examples
3.1. Indifference Pricing under Black–Scholes Model with a Lipschitz Payoff Function
3.1.1. One-Dimensional Case
3.1.2. 10-Dimensional Case
3.1.3. 100-Dimensional Case
3.2. Indifference Pricing under Constant Elasticity Model (CEV Model) with a Bounded Measurable Payoff Function
3.3. Indifference Pricing under Stochastic Volatility Model with a Lipschitz Payoff Function
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SDE | Stochastic Differential Equation |
References
- James, M.R.; Baras, J.S.; Elliott, R.J. Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems. IEEE Trans. Automat. Contr. 1994, 39, 780–792. [Google Scholar] [CrossRef]
- Campi, M.C.; James, M.R. Nonlinear discrete-time risk-sensitive optimal control. Int. J. Robust Nonlinear Control 1996, 6, 1–19. [Google Scholar] [CrossRef]
- James, M.R. Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games. Math. Control Signals Syst. 1992, 5, 401–417. [Google Scholar] [CrossRef]
- Whittle, P. Risk-sensitive linear/quadratic/gaussian control. Adv. Appl. Probab. 1981, 13, 764–777. [Google Scholar] [CrossRef]
- Whittle, P. Risk sensitivity, a strangely pervasive concept. Macroecon. Dyn. 2002, 6, 5–18. [Google Scholar] [CrossRef]
- Fleming, W.H. Risk sensitive stochastic control and differential games. Commun. Inf. Syst. 2006, 6, 161–177. [Google Scholar] [CrossRef]
- Hartmann, C.; Richter, L.; Schütte, C.; Zhang, W. Variational characterization of free energy: Theory and algorithms. Entropy 2017, 19, 626. [Google Scholar] [CrossRef]
- Nüsken, N.; Richter, L. Solving high-dimensional Hamilton–Jacobi-Bellman PDEs using neural networks: Perspectives from the theory of controlled diffusions and measures on path space. Partial Differ. Equ. Appl. 2021, 2, 1–48. [Google Scholar] [CrossRef]
- Boué, M.; Dupuis, P. A variational representation for certain functionals of Brownian motion. Ann. Probab. 1998, 26, 1641–1659. [Google Scholar] [CrossRef]
- Reich, S. Data assimilation: The Schrödinger perspective. Acta Numer. 2019, 28, 635–711. [Google Scholar] [CrossRef]
- Davis, M.H. Optimal hedging with basis risk. In From Stochastic Calculus to Mathematical Finance; Kabanov, Y., Liptser, R., Stoyanov, J., Eds.; Springer: Berlin, Deutsch, 2006; pp. 169–187. [Google Scholar]
- Sekine, J. An approximation for exponential hedging. In Stochastic Analysis and Related Topics in Kyoto: In Honour of Kiyosi Itô; Mathematical Society of Japan: Tokyo, Japan, 2004; Volume 41, pp. 279–300. [Google Scholar]
- Carmona, R. Indifference Pricing: Theory and Applications; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Monoyios, M. Malliavin calculus method for asymptotic expansion of dual control problems. SIAM J. Financ. Math. 2013, 4, 884–915. [Google Scholar] [CrossRef]
- Benedetti, G.; Campi, L. Utility indifference valuation for non-smooth payoffs with an application to power derivatives. Appl. Math. Opt. 2016, 73, 349–389. [Google Scholar] [CrossRef]
- Watanabe, S. Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab. 1987, 15, 1–39. [Google Scholar] [CrossRef]
- Takahashi, A.; Yamada, T. An asymptotic expansion with push-down of Malliavin weights. SIAM J. Financ. Math. 2012, 3, 95–136. [Google Scholar] [CrossRef]
- Takahashi, A.; Yamada, T. On error estimates for asymptotic expansions with Malliavin weights: Application to stochastic volatility model. Math. Oper. Res. 2015, 40, 513–541. [Google Scholar] [CrossRef]
- Takahashi, A.; Yamada, T. A weak approximation with asymptotic expansion and multidimensional Malliavin weights. Ann. Appl. Probab. 2016, 26, 818–856. [Google Scholar] [CrossRef]
- Yamada, T. An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo: Application to probability distribution functions. SIAM J. Numer. Anal. 2019, 57, 563–591. [Google Scholar] [CrossRef]
- Naito, R.; Yamada, T. A third-order weak approximation of multi-dimensional Itô stochastic differential equations. Monte Carlo Methods Appl. 2019, 25, 97–120. [Google Scholar] [CrossRef]
- Naito, R.; Yamada, T. A higher order weak approximation of McKean-Vlasov type SDEs. BIT 2022, 62, 521–559. [Google Scholar] [CrossRef]
- Iguchi, Y.; Yamada, T. Operator splitting around Euler–Maruyama scheme and high order discretization of heat kernels. ESAIM Math. Model. Num. 2021, 55, 323–367. [Google Scholar] [CrossRef]
- Iguchi, Y.; Naito, R.; Okano, Y.; Takahashi, A.; Yamada, T. Deep asymptotic expansion: Application to financial mathematics. Proceedings of IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Brisbane, Australia, 8 December 2021. [Google Scholar]
- Ikeda, N.; Watanabe, S. Stochastic Differential Equations and Diffusion Processes, 2nd ed.; North-Holland Math. Lib.: Amsterdam, The Nederlands, 1989. [Google Scholar]
- Nualart, D. The Malliavin Calculus and Related Topics; Springer: Berlin, Deutsch, 2006. [Google Scholar]
EM () | |||
WA 2nd () |
EM () | |||
WA 2nd () |
EM () | |||
WA 2nd () |
EM () | |||
WA 2nd () |
EM () | |||
WA 2nd () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannari, M.; Naito, R.; Yamada, T. Asymptotic Expansion and Weak Approximation for a Stochastic Control Problem on Path Space. Entropy 2024, 26, 119. https://doi.org/10.3390/e26020119
Kannari M, Naito R, Yamada T. Asymptotic Expansion and Weak Approximation for a Stochastic Control Problem on Path Space. Entropy. 2024; 26(2):119. https://doi.org/10.3390/e26020119
Chicago/Turabian StyleKannari, Masaya, Riu Naito, and Toshihiro Yamada. 2024. "Asymptotic Expansion and Weak Approximation for a Stochastic Control Problem on Path Space" Entropy 26, no. 2: 119. https://doi.org/10.3390/e26020119
APA StyleKannari, M., Naito, R., & Yamada, T. (2024). Asymptotic Expansion and Weak Approximation for a Stochastic Control Problem on Path Space. Entropy, 26(2), 119. https://doi.org/10.3390/e26020119