Directed Network Comparison Using Motifs
Abstract
:1. Introduction
2. Method
2.1. The Definition of Motifs in a Directed Network
2.2. The Motif-Based Directed Network Comparison Method
3. Baselines and Datasets
3.1. Baselines
3.2. Description of Directed Network Datasets
4. Experimental Results
4.1. The Dissimilarity between a Real Network and Its Null Models
4.2. The Comparison of the Directed Network and Its Perturbed Network
4.3. Parameter Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barabási, A.L. Network Science. Philos. Trans. Royal Soc. A 2013, 371, 20120375. [Google Scholar] [CrossRef]
- Knoke, D.; Yang, S. Social Network Analysis; SAGE Publications: New York, NY, USA, 2019. [Google Scholar]
- Zhan, X.X.; Li, Z.; Masuda, N.; Holme, P.; Wang, H. Susceptible-infected-spreading-based network embedding in static and temporal networks. EPJ Data Sci. 2020, 9, 30. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Y.; Zhao, J.; Nussinov, R.; Zhang, Y.C.; Cheng, F.; Zhang, Z.K. Computational Network Biology: Data, Models, and Applications. Phys. Rep. 2020, 846, 1–66. [Google Scholar] [CrossRef]
- Schweitzer, F.; Fagiolo, G.; Sornette, D.; Vega-Redondo, F.; Vespignani, A.; White, D.R. Economic Networks: The New Challenges. Science 2009, 325, 422–425. [Google Scholar] [CrossRef]
- Bretto, A. Hypergraph Theory. An Introduction; Mathematical Engineering; Springer: Cham, Switzerland, 2013. [Google Scholar]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef]
- Benson, A.R.; Gleich, D.F.; Leskovec, J. Higher-order organization of complex networks. Science 2016, 353, 163–166. [Google Scholar] [CrossRef]
- Xie, X.; Zhan, X.; Zhang, Z.; Liu, C. Vital node identification in hypergraphs via gravity model. Chaos 2023, 33, 013104. [Google Scholar] [CrossRef] [PubMed]
- Tantardini, M.; Ieva, F.; Tajoli, L.; Piccardi, C. Comparing methods for comparing networks. Sci. Rep. 2019, 9, 17557. [Google Scholar] [CrossRef]
- Soundarajan, S.; Eliassi-Rad, T.; Gallagher, B. A guide to selecting a network similarity method. In Proceedings of the 2014 SIAM International Conference on Data Mining, Philladelphia, PA, USA, 24–26 April 2014; pp. 1037–1045. [Google Scholar]
- Conte, D.; Foggia, P.; Sansone, C.; Vento, M. Thirty years of graph matching in pattern recognition. Intern. J. Pattern Recognit. Artif. Intell. 2004, 18, 265–298. [Google Scholar] [CrossRef]
- Sharan, R.; Ideker, T. Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 2006, 24, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Mheich, A.; Wendling, F.; Hassan, M. Brain network similarity: Methods and applications. Netw. Neurosci. 2020, 4, 507–527. [Google Scholar] [CrossRef]
- Zemlyachenko, V.N.; Korneenko, N.M.; Tyshkevich, R.I. Graph isomorphism problem. J. Sov. Math. 1985, 29, 1426–1481. [Google Scholar] [CrossRef]
- Cook, S.A. The complexity of theorem-proving procedures. In Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook; ACM: New York, NY, USA, 2023; pp. 143–152. [Google Scholar]
- Latora, V.; Marchiori, M. A measure of centrality based on network efficiency. New J. Phys. 2007, 9, 188. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Wu, W.T.; Wang, H.; Xiong, M.; Wang, W. Symmetry-based structure entropy of complex networks. Phys. A Stat. Mech. Appl. 2008, 387, 2611–2619. [Google Scholar] [CrossRef]
- Babai, L. Graph isomorphism in quasipolynomial time. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, Boston, MA, USA, 19–21 June 2016; pp. 684–697. [Google Scholar]
- Lv, L.; Zhang, K.; Zhang, T.; Li, X.; Zhang, J.; Xue, W. Eigenvector centrality measure based on node similarity for multilayer and temporal networks. IEEE Access 2019, 7, 115725–115733. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Z.; Han, Y. A Path-Based Distribution Measure for Network Comparison. Entropy 2020, 22, 1287. [Google Scholar] [CrossRef] [PubMed]
- Schieber, T.A.; Carpi, L.; Díaz-Guilera, A.; Pardalos, P.M.; Masoller, C.; Ravetti, M.G. Quantification of network structural dissimilarities. Nat. Commun. 2017, 8, 13928. [Google Scholar] [CrossRef] [PubMed]
- Bagrow, J.P.; Bollt, E.M. An information-theoretic, all-scales approach to comparing networks. Appl. Netw. Sci. 2019, 4, 45. [Google Scholar] [CrossRef]
- Koutra, D.; Vogelstein, J.T.; Faloutsos, C. Deltacon: A principled massive-graph similarity function. In Proceedings of the 2013 SIAM International Conference on Data Mining, Alexandria, VA, USA, 2–4 May 2013; pp. 162–170. [Google Scholar]
- Sarajlić, A.; Malod-Dognin, N.; Yaveroğlu, Ö.N.; Pržulj, N. Graphlet-based characterization of directed networks. Sci. Rep. 2016, 6, 35098. [Google Scholar] [CrossRef] [PubMed]
- Pržulj, N. Biological network comparison using graphlet degree distribution. Bioinformatics 2007, 23, e177–e183. [Google Scholar] [CrossRef]
- Cohen, E.; Delling, D.; Fuchs, F.; Goldberg, A.V.; Goldszmidt, M.; Werneck, R.F. Scalable similarity estimation in social networks: Closeness, node labels, and random edge lengths. In Proceedings of the First ACM Conference on Online Social Networks, Boston, MA, USA, 7–8 October 2013; pp. 131–142. [Google Scholar]
- Yaveroğlu, Ö.N.; Milenković, T.; Pržulj, N. Proper evaluation of alignment-free network comparison methods. Bioinformatics 2015, 31, 2697–2704. [Google Scholar] [CrossRef]
- Liu, K.; Lü, X.; Gao, F.; Zhang, J. Expectation-maximizing network reconstruction and most applicable network types based on binary time series data. Phys. D Nonlinear Phenom. 2023, 454, 133834. [Google Scholar] [CrossRef]
- Lotito, Q.F.; Musciotto, F.; Montresor, A.; Battiston, F. Higher-order motif analysis in hypergraphs. Commun. Phys. 2022, 5, 79. [Google Scholar] [CrossRef]
- Wang, T.; Peng, J.; Peng, Q.; Wang, Y.; Chen, J. FSM: Fast and scalable network motif discovery for exploring higher-order network organizations. Methods 2020, 173, 83–93. [Google Scholar] [CrossRef]
- Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U. Network motifs: Simple building blocks of complex networks. Science 2002, 298, 824–827. [Google Scholar] [CrossRef]
- Li, P.Z.; Huang, L.; Wang, C.D.; Huang, D.; Lai, J.H. Community detection using attribute homogenous motif. IEEE Access 2018, 6, 47707–47716. [Google Scholar] [CrossRef]
- Qiu, Z.; Wu, J.; Hu, W.; Du, B.; Yuan, G.; Yu, P. Temporal link prediction with motifs for social networks. IEEE Trans. Knowl. Data Eng. 2023, 35, 3145–3158. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, H.; Huang, R.; Liu, S.; Hu, N.; Cao, X. A novel higher-order neural network framework based on motifs attention for identifying critical nodes. Phys. A Stat. Mech. Appl. 2023, 629, 129194. [Google Scholar] [CrossRef]
- Takahata, Y. Diachronic changes in the dominance relations of adult female Japanese monkeys of the Arashiyama B group. In The Monkeys of Arashiyama; State University of New York Press: Albany, NY, USA, 1991; pp. 123–139. [Google Scholar]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 1986, 314, 1–340. [Google Scholar] [PubMed]
- Coleman, J.; Katz, E.; Menzel, H. The diffusion of an innovation among physicians. Sociometry 1957, 20, 253–270. [Google Scholar] [CrossRef]
- Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 2007, 1, 2-es. [Google Scholar] [CrossRef]
- Kunegis, J. Konect: The koblenz network collection. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brasil, 13–17 May 2013; pp. 1343–1350. [Google Scholar]
- Wang, Z.; Zhan, X.X.; Liu, C.; Zhang, Z.K. Quantification of network structural dissimilarities based on network embedding. iScience 2022, 25, 104446. [Google Scholar] [CrossRef] [PubMed]
- Orsini, C.; Dankulov, M.M.; Colomer-de Simón, P.; Jamakovic, A.; Mahadevan, P.; Vahdat, A.; Bassler, K.E.; Toroczkai, Z.; Boguná, M.; Caldarelli, G.; et al. Quantifying randomness in real networks. Nat. Commun. 2015, 6, 8627. [Google Scholar] [CrossRef] [PubMed]
Networks | N | M | Ad | Avl | d |
---|---|---|---|---|---|
Mac | 62 | 1187 | 38.29 | 1.38 | 2 |
Elegans | 237 | 4296 | 28.92 | 2.47 | 5 |
Physicians | 241 | 1098 | 9.11 | 2.58 | 4 |
1005 | 25,571 | 50.84 | 2.94 | 7 | |
US airport | 1574 | 28,236 | 35.87 | 3.13 | 8 |
Chess | 7301 | 65,053 | 17.82 | 3.92 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Ke, Q.; Chen, H.; Liu, C.; Zhan, X.-X. Directed Network Comparison Using Motifs. Entropy 2024, 26, 128. https://doi.org/10.3390/e26020128
Xie C, Ke Q, Chen H, Liu C, Zhan X-X. Directed Network Comparison Using Motifs. Entropy. 2024; 26(2):128. https://doi.org/10.3390/e26020128
Chicago/Turabian StyleXie, Chenwei, Qiao Ke, Haoyu Chen, Chuang Liu, and Xiu-Xiu Zhan. 2024. "Directed Network Comparison Using Motifs" Entropy 26, no. 2: 128. https://doi.org/10.3390/e26020128
APA StyleXie, C., Ke, Q., Chen, H., Liu, C., & Zhan, X.-X. (2024). Directed Network Comparison Using Motifs. Entropy, 26(2), 128. https://doi.org/10.3390/e26020128