Convergence of Relative Entropy for Euler–Maruyama Scheme to Stochastic Differential Equations with Additive Noise
Abstract
1. Introduction
2. Preliminaries
2.1. Euler–Maruyama Scheme
2.2. Relative Entropy
2.3. Total Variation and Weighted Variation Distance
2.4. Stochastic Differential Equation Description
3. Assumptions and Main Results
3.1. Assumptions
- (A)
- There exists a constant and such that
3.2. Main Results
4. Proofs
4.1. Proof of Theorem 1
4.2. Proof of Corollary 1
4.3. Proof of Theorem 2
5. Conclusions and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kloden, P.E.; Platen, E. Numerical Solutions of Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germnay, 1992. [Google Scholar]
- Yan, L. The Euler scheme with irregular coefficients. Ann. Probab. 2002, 30, 1172–1194. [Google Scholar] [CrossRef]
- Gyöngy, I.; Rásonyi, M. A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl. 2011, 121, 2189–2200. [Google Scholar] [CrossRef]
- Halidias, N.; Kloeden, P.E. A note on the Euler-Maruyama scheme for stochastic differential equations with a discontinuous monotone drift coefficient. BIT Numer. Math. 2008, 48, 51–59. [Google Scholar] [CrossRef]
- Leobacher, G.; Szölgyenyi, M. A numerical method for SDEs with discontinuous drift. BIT Numer. Math. 2016, 56, 151–162. [Google Scholar] [CrossRef]
- Müller-Gronbach, T.; Yaroslavtseva, L. On the performance of the Euler-Maruyama scheme for SDEs with discontinuous drift coefficient. Ann. L’Institut Henri PoincarÉ Probab. Stat. 2020, 56, 1162–1178. [Google Scholar] [CrossRef]
- Leobacher, G.; Szölgyenyi, M. A strong order 1/2 method for multidimensional SDEs with discontinuous drift. Ann. Appl. Probab. 2017, 27, 2383–2418. [Google Scholar] [CrossRef]
- Leobacher, G.; Szölgyenyi, M. Convergence of the Euler-Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient. Numer. Math. 2018, 138, 219–239. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Huang, X.; Yuan, C. Convergence rate of Euler–Maruyama Scheme for SDEs with Hölder-Dini continuous drifts. J. Theor. Probab. 2019, 32, 848–871. [Google Scholar] [CrossRef]
- Pamen, O.M.; Taguchi, D. Strong rate of convergence for the Euler–Maruyama approximation of SDEs with Hölder continuous drift coefficient. Stoch. Process. Appl. 2017, 127, 2542–2559. [Google Scholar] [CrossRef]
- Bao, J.; Huang, X.; Zhang, S. Convergence rate of EM algorithm for SDEs under integrability condition. arXiv 2022, arXiv:2009.04781. [Google Scholar]
- Shao, J. Weak convergence of Euler-Maruyama’s approximation for SDEs under integrability condition. arXiv 2018, arXiv:1808.07250. [Google Scholar]
- Suo, Y.; Yuan, C.; Zhang, S.-Q. Weak convergence of Euler scheme for SDEs with singular drift. arXiv 2020, arXiv:2005.04631. [Google Scholar]
- Villani, C. Optimal Transport: Old and New; Springer: Berlin/Heidelberg, Germnay, 2009. [Google Scholar]
- Sommaruga, G. Formal Theories of Information: From Shannon to Semantic Information Theory and General Concepts of Information; Springer: Berlin/Heidelberg, Germnay, 2009. [Google Scholar]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Calin, O.; Udrişte, C. Geometric Modeling in Probability and Statistics; Springer: Berlin/Heidelberg, Germnay, 2014. [Google Scholar]
- Zvonkin, A.K. A transformation of the phase space of a diffusion process that removes the drift. Math. USSR Sb. 1974, 93, 129–149. [Google Scholar] [CrossRef]
- Flandoli, M.; Gubinelli, M.; Priola, E. Flow of diffeomorphisms for SDEs with unbounded Hölder continuous drift. Bull. Sci. Math. 2010, 134, 405–422. [Google Scholar] [CrossRef]
- Vinod, D.; Cherstvy, A.G.; Metzler, R.; Sokolov, I.M. Time-averaging and nonergodicity of reset geometric Brownian motion with drift. Phys. Rev. E 2022, 106, 034137. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, W.; Metzler, R.; Cherstvy, A.G. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks. Phys. Rev. E 2023, 108, 034113. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y. Convergence of Relative Entropy for Euler–Maruyama Scheme to Stochastic Differential Equations with Additive Noise. Entropy 2024, 26, 232. https://doi.org/10.3390/e26030232
Yu Y. Convergence of Relative Entropy for Euler–Maruyama Scheme to Stochastic Differential Equations with Additive Noise. Entropy. 2024; 26(3):232. https://doi.org/10.3390/e26030232
Chicago/Turabian StyleYu, Yuan. 2024. "Convergence of Relative Entropy for Euler–Maruyama Scheme to Stochastic Differential Equations with Additive Noise" Entropy 26, no. 3: 232. https://doi.org/10.3390/e26030232
APA StyleYu, Y. (2024). Convergence of Relative Entropy for Euler–Maruyama Scheme to Stochastic Differential Equations with Additive Noise. Entropy, 26(3), 232. https://doi.org/10.3390/e26030232