(Re)Construction of Quantum Space-Time: Transcribing Hilbert into Configuration Space
Abstract
:1. It-from-Click Imaging
2. Conventions and the Necessity of Parameter Independence and, Thus, Choice
3. Inseparability and the Lack of Mutual, Relational Choice
4. Orthogonality of Configuration Space from Hilbert Space
5. Controllable Nonlocality and Parameter Dependence of Outcomes Due to Nonlinearity of Quantum Field Theory?
6. Summary and Afterthoughts
- (i)
- First, Einstein’s separation criterion (German ‘Trennungsprinzip’ [53] (pp. 537–539)), which states that relativity theory, and in particular its causal structure determined by light cones, applies to observables formalized as operators.Recall that Einstein, in a letter to Schrödinger [32,53], emphasized (wrongly in my interpretation of the argument) that following a collision that entangles the constituents L and R, the compound state could be thought of as comprising the actual state of L and the actual state of R. Einstein argues that those states should be considered unrelated—in particular, there is no relationality. Therefore, the real state of L (due to possible spacelike separation) cannot be influenced by the type of measurement conducted on R.Our approach diverges from Einstein, insofar as we deny the existence of a preexisting Newtonian space-time theater, even in the modified version proposed by Poincaré and Einstein. Therefore, we cannot depend on a preexisting space-time structure for operators to commute.
- (ii)
- Second, it assumes that states are distinct from operators, even though pure states can be reinterpreted as the formalization of observables; specifically, as the assertion that the system is in the respective state.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svozil, K. On the Complete Description of Entangled Systems Part I—Exploring Hidden Variables and Context Communication Cost in Simulating Quantum Correlations. Int. J. Theor. Phys. 2024, 63, 20. [Google Scholar] [CrossRef]
- Svozil, K. On the Complete Description of Entangled Systems Part II: The (Meta)Physical Status and Semantic Aspects. Entropy 2022, 24, 1724. [Google Scholar] [CrossRef]
- Stace, W.T. I.—The Refutation of Realism. Mind 1934, XLIII, 145–155. [Google Scholar] [CrossRef]
- Bridgman, P.W. The Nature of Physical Theory; Princeton University Press: Princeton, NJ, USA, 1936. [Google Scholar]
- Zeilinger, A.; Svozil, K. Measuring the dimension of space-time. Phys. Rev. Lett. 1985, 54, 2553–2555. [Google Scholar] [CrossRef] [PubMed]
- Zeilinger, A. A Foundational Principle for Quantum Mechanics. Found. Phys. 1999, 29, 631–643. [Google Scholar] [CrossRef]
- Summhammer, J. Maximum predictive power and the superposition principle. Int. J. Theor. Phys. 1994, 33, 171–178. [Google Scholar] [CrossRef]
- Hardy, L. Towards quantum gravity: A framework for probabilistic theories with non-fixed causal structure. J. Phys. A Math. Theor. 2007, 40, 3081–3099. [Google Scholar] [CrossRef]
- Hertz, H. The Principles of Mechanics Presented in a New Form; Jones, D.E.; Walley, J.T., Translators; foreword by von Helmholtz, H.; MacMillan and Co., Ltd.: London, UK; New York, NY, USA, 1899. [Google Scholar]
- Ballard, K.E. Leibniz’s Theory of Space and Time. J. Hist. Ideas 1960, 21, 49–65. [Google Scholar] [CrossRef]
- Leibniz, G.W.; Clarke, S. Leibniz and Clarke: Correspondence; Edited, with Introduction, by Ariew, R.; Hackett Publishing Company, Inc.: Indianapolis, IN, USA, 2000. [Google Scholar]
- Petley, B.W. New definition of the metre. Nature 1983, 303, 373–376. [Google Scholar] [CrossRef]
- Peres, A. Defining length. Nature 1984, 312, 10. [Google Scholar] [CrossRef]
- Alexandrov, A.D. On Lorentz Transformations. Uspekhi Mat. Nauk 1950, 5, 187. (In Russian) [Google Scholar]
- Lester, J.A. Distance Preserving Transformations. In Handbook of Incidence Geometry; Buekenhout, F., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 921–944. [Google Scholar] [CrossRef]
- Scully, M.O.; Drühl, K. Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 1982, 25, 2208–2213. [Google Scholar] [CrossRef]
- Greenberger, D.M.; YaSin, A. “Haunted” measurements in quantum theory. Found. Phys. 1989, 19, 679–704. [Google Scholar] [CrossRef]
- Ma, X.S.; Kofler, J.; Qarry, A.; Tetik, N.; Scheidl, T.; Ursin, R.; Ramelow, S.; Herbst, T.; Ratschbacher, L.; Fedrizzi, A.; et al. Quantum erasure with causally disconnected choice. Proc. Natl. Acad. Sci. USA 2013, 110, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Poincaré, H. La théorie de Lorentz et le principe de réaction. Arch. Neerl. Sci. Exactes Nat. Ser. II 1900, 5, 252–278. [Google Scholar]
- Poincaré, H. L’etat actuel et L’avenir de la physique matheématique. Bull. Sci. Math. 1904, 28, 302–324. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k486258r/f476.item (accessed on 21 January 2024).
- Einstein, A. Zur Elektrodynamik bewegter Körper. Ann. Phys. 1905, 322, 891–921. [Google Scholar] [CrossRef]
- Einstein, A. The Principle of Relativity and Its Consequences in Modern Physics. In The Collected Papers of Albert Einstein, Volume 3. The Swiss Years: Writings 1909–1911 (English Translation Supplement); Princeton University Press: Princeton, NJ, USA, 1994; pp. 117–142. Available online: https://einsteinpapers.press.princeton.edu/vol3-trans/131 (accessed on 21 January 2024).
- Jammer, M. Concepts of Simultaneity: From Antiquity to Einstein and Beyond; Johns Hopkins University Press: Baltimore, MD, USA, 2006. [Google Scholar]
- Minguzzi, E. The Poincaré-Einstein synchronization: Historical aspects and new developments. J. Phys. Conf. Ser. 2011, 306, 012059. [Google Scholar] [CrossRef]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 823–828. [Google Scholar] [CrossRef]
- Brukner, Č.; Żukowski, M.; Zeilinger, A. The Essence of Entanglement. In Quantum Arrangements. Contributions in Honor of Michael Horne; Fundamental Theories of Physics; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 117–138. [Google Scholar] [CrossRef]
- Shimony, A. Controllable and uncontrollable non-locality. In Proceedings of the International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 29–31 August 1983; Kamefuchi, S., Ezawa, H., Murayama, Y., Namiki, M., Nomura, S., Ohnuki, Y., Yajima, T., Eds.; Central Research Laboratory, Hitachi, Ltd.: Kokubunji, Japan, 1984; pp. 225–230. [Google Scholar]
- Shimony, A. Controllable and uncontrollable non-locality. In The Search for a Naturalistic World View. Volume II; Shimony, A., Ed.; Cambridge University Press: Cambridge, UK, 1993; Volume 2, pp. 130–139. [Google Scholar] [CrossRef]
- Zeilinger, A. The message of the quantum. Nature 2005, 438, 743. [Google Scholar] [CrossRef]
- Weihs, G.; Jennewein, T.; Simon, C.; Weinfurter, H.; Zeilinger, A. Violation of Bell’s Inequality under Strict Einstein Locality Conditions. Phys. Rev. Lett. 1998, 81, 5039–5043. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Howard, D. Einstein on locality and separability. Stud. Hist. Philos. Sci. Part A 1985, 16, 171–201. [Google Scholar] [CrossRef]
- Zukowski, M.; Zeilinger, A.; Horne, M.A.; Ekert, A.K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 1993, 71, 4287–4290. [Google Scholar] [CrossRef] [PubMed]
- Megidish, E.; Halevy, A.; Shacham, T.; Dvir, T.; Dovrat, L.; Eisenberg, H.S. Entanglement Swapping between Photons that have Never Coexisted. Phys. Rev. Lett. 2013, 110. [Google Scholar] [CrossRef] [PubMed]
- Peres, A. Delayed choice for entanglement swapping. J. Mod. Opt. 2000, 47, 139–143. [Google Scholar] [CrossRef]
- Svozil, K. A note on the statistical sampling aspect of delayed choice entanglement swapping. In Probing the Meaning of Quantum Mechanics; Aerts, D., Dalla Chiara, M.L., de Ronde, C., Krause, D., Eds.; World Scientific: Singapore, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Bennett, C.H.; DiVincenzo, D.P.; Smolin, J.A.; Wootters, W.K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 1996, 54, 3824–3851. [Google Scholar] [CrossRef]
- Froissart, M. Constructive generalization of Bell’s inequalities. Il Nuovo Cimento B 1981, 64, 241–251. [Google Scholar] [CrossRef]
- Pitowsky, I. The range of quantum probability. J. Math. Phys. 1986, 27, 1556–1565. [Google Scholar] [CrossRef]
- Cirel’son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93–100. [Google Scholar] [CrossRef]
- Filipp, S.; Svozil, K. Generalizing Tsirelson’s Bound on Bell Inequalities Using a Min-Max Principle. Phys. Rev. Lett. 2004, 93, 130407. [Google Scholar] [CrossRef]
- Peres, A. Unperformed experiments have no results. Am. J. Phys. 1978, 46, 745–747. [Google Scholar] [CrossRef]
- Krenn, G.; Svozil, K. Stronger-than-quantum correlations. Found. Phys. 1998, 28, 971–984. [Google Scholar] [CrossRef]
- Svozil, K. Communication cost of breaking the Bell barrier. Phys. Rev. A 2005, 72, 050302. [Google Scholar] [CrossRef]
- Shirokov, M.I. Signal velocity in quantum electrodynamics. Sov. Phys. Uspekhi 1978, 21, 345–358. [Google Scholar] [CrossRef]
- Hegerfeldt, G.C. Instantaneous spreading and Einstein causality in quantum theory. Ann. Der Phys. 1998, 510, 716–725. [Google Scholar] [CrossRef]
- Perez, J.F.; Wilde, I.F. Localization and causality in relativistic quantum mechanics. Phys. Rev. D 1977, 16, 315–317. [Google Scholar] [CrossRef]
- Svidzinsky, A.; Azizi, A.; Ben-Benjamin, J.S.; Scully, M.O.; Unruh, W. Causality in quantum optics and entanglement of Minkowski vacuum. Phys. Rev. Res. 2021, 3, 013202. [Google Scholar] [CrossRef]
- Svozil, K. What is wrong with SLASH? arXiv 2001, arXiv:quant-ph/0103166. [Google Scholar]
- Page, D.N.; Wootters, W.K. Evolution without evolution: Dynamics described by stationary observables. Phys. Rev. D 1983, 27, 2885–2892. [Google Scholar] [CrossRef]
- Wootters, W.K. “Time” replaced by quantum correlations. Int. J. Theor. Phys. 1984, 23, 701–711. [Google Scholar] [CrossRef]
- Moreva, E.; Brida, G.; Gramegna, M.; Giovannetti, V.; Maccone, L.; Genovese, M. Time from quantum entanglement: An experimental illustration. Phys. Rev. A 2014, 89, 052122. [Google Scholar] [CrossRef]
- von Meyenn, K. Eine Entdeckung von Ganz Außerordentlicher Tragweite. Schrödingers Briefwechsel zur Wellenmechanik und Zum Katzenparadoxon; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Bell, J.S. Against ‘measurement’. Phys. World 1990, 3, 33–41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svozil, K. (Re)Construction of Quantum Space-Time: Transcribing Hilbert into Configuration Space. Entropy 2024, 26, 267. https://doi.org/10.3390/e26030267
Svozil K. (Re)Construction of Quantum Space-Time: Transcribing Hilbert into Configuration Space. Entropy. 2024; 26(3):267. https://doi.org/10.3390/e26030267
Chicago/Turabian StyleSvozil, Karl. 2024. "(Re)Construction of Quantum Space-Time: Transcribing Hilbert into Configuration Space" Entropy 26, no. 3: 267. https://doi.org/10.3390/e26030267
APA StyleSvozil, K. (2024). (Re)Construction of Quantum Space-Time: Transcribing Hilbert into Configuration Space. Entropy, 26(3), 267. https://doi.org/10.3390/e26030267