Why Does Cross-Sectional Analyst Coverage Incorporate Market-Wide Information?
Abstract
:1. Introduction
2. Exponentially Distributed Cross-Sectional Analyst Coverage
2.1. Evidence from the Shanghai, Shenzhen, and Hong Kong Stock Markets
2.2. Difference in Exponential Fitting between SSE, SZSE, and HK
2.3. Predicting Stock-Market Uncertainty
2.3.1. Distribution Changes during the Period 2011–2020
2.3.2. Predictive Regression Results
3. MEP Generates the Exponential Distribution
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Yearly Results for the Shanghai Stock Market (SSE)
References
- Kelly, B.; Ljungqvist, A. Testing asymmetric-information asset pricing models. Rev. Financ. Stud. 2012, 25, 1366–1413. [Google Scholar] [CrossRef]
- Lee, C.; So, E. Uncovering expected returns: Information in analyst coverage proxies. Rev. Financ. Stud. 2017, 124, 331–348. [Google Scholar] [CrossRef]
- Guo, L.; Li, F.; Wei, K. Security analysts and capital market anomalies. J. Financ. Econ. 2020, 137, 204–230. [Google Scholar] [CrossRef]
- Yu, F. Analyst coverage and earnings management. J. Financ. Econ. 2008, 88, 245–271. [Google Scholar] [CrossRef]
- Derrien, F.; Kecskes, A. The real effects of financial shocks: Evidence from exogenous changes in analyst coverage. J. Financ. 2013, 68, 1407–1440. [Google Scholar] [CrossRef]
- He, J.; Tian, X. The dark side of analyst coverage: The case of innovation. J. Financ. Econ. 2013, 109, 856–878. [Google Scholar] [CrossRef]
- Chen, T.; Harford, J.; Lin, C. Do analysts matter for governance? Evidence from natural experiments. J. Financ. Econ. 2006, 115, 383–410. [Google Scholar] [CrossRef]
- Chan, K.; Hameed, A. Stock price synchronicity and analyst coverage in emerging markets. J. Financ. Econ. 2006, 80, 115–147. [Google Scholar] [CrossRef]
- Gao, K.; Lin, W.; Yang, L.; Chan, K. The impact of analyst coverage and stock price synchronicity: Evidence from brokerage mergers and closures. Financ. Res. Lett. 2020, 33, 101190. [Google Scholar] [CrossRef]
- Scharfenaker, E.; dos Santos, P. The distribution and regulation of Tobin’s q. Econ. Lett. 2015, 137, 191–194. [Google Scholar] [CrossRef]
- Newey, W.; West, K. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 1987, 55, 703–708. [Google Scholar] [CrossRef]
- Frankel, A.; Kamenica, E. Quantifying information and uncertainty. Am. Econ. Rev. 2019, 109, 3650–3680. [Google Scholar] [CrossRef]
- Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Minton, B.; Schrand, C. The impact of cash flow volatility on discretionary investment and the costs of debt and equity financing. J. Financ. Econ. 1999, 54, 423–460. [Google Scholar] [CrossRef]
- Bloom, N. The impact of uncertainty shocks. Econometrica 2009, 77, 623–685. [Google Scholar]
- Da, Z.; Engelberg, J.; Gao, P. In search of attention. J. Financ. 2011, 66, 1461–1499. [Google Scholar] [CrossRef]
- Benamar, H.; Foucault, T.; Vega, C. Demand for information, uncertainty, and the response of US Treasury securities to news. Rev. Financ. Stud. 2021, 34, 3403–3455. [Google Scholar] [CrossRef]
- Neilson, J. Investor information gathering and the resolution of uncertainty. J. Account. Econ. 2022, 74, 101513. [Google Scholar] [CrossRef]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Loh, R.; Stulz, R. Is sell-side research more valuable in bad times? J. Financ. 2018, 73, 959–1013. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, C. Understanding the role of aggregate analyst attention in resolving stock market uncertainty. Financ. Res. Lett. 2023, 57, 104183. [Google Scholar] [CrossRef]
- Jaynes, E. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Foley, D. A statistical equilibrium theory of markets. J. Econ. Theory 1994, 62, 321–345. [Google Scholar] [CrossRef]
- Sims, C. Implications of rational inattention. J. Monet. Econ. 2003, 50, 665–690. [Google Scholar] [CrossRef]
Mean | S.D. | Min | Max | Med. | Skew. | Kurt. | No. | |
---|---|---|---|---|---|---|---|---|
5.44 | 6.24 | 1 | 49 | 3 | 1.95 | 6.93 | 108,282 | |
5.19 | 5.64 | 1 | 49 | 3 | 1.98 | 7.34 | 165,678 | |
4.30 | 4.99 | 1 | 47 | 2 | 2.09 | 8.62 | 88,794 |
() | () | () | () | |||||||
Panel A. Monthly exponential fitting for SSE and SZSE | ||||||||||
*** | *** | *** | *** | |||||||
NW t | ||||||||||
*** | *** | *** | *** | |||||||
NW t | ||||||||||
Panel B. Monthly exponential fitting for HK | ||||||||||
NW t |
Panel A. Predicting future manager uncertainty proxied by cash-flow volatility | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
*** | ** | *** | *** | *** | *** | |
Trend | No | Yes | No | Yes | No | Yes |
Lagged CFV | No | Yes | No | Yes | No | Yes |
N | 108 | 108 | 102 | 102 | 96 | 96 |
0.31 | 0.86 | 0.42 | 0.82 | 0.50 | 0.86 | |
ADF.prob | 1 × | 1 × | 5 × | 1 × | 2 × | 5 × |
Panel B. Predicting future investor uncertainty proxied by information demand | ||||||
*** | *** | *** | *** | *** | *** | |
Trend | No | Yes | No | Yes | No | Yes |
Lagged Search | No | Yes | No | Yes | No | Yes |
N | 108 | 108 | 102 | 102 | 96 | 96 |
0.22 | 0.58 | 0.40 | 0.65 | 0.42 | 0.71 | |
ADF.prob | 1 × | 1 × | 1 × | 5 × | 1 × | 1 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Hu, C. Why Does Cross-Sectional Analyst Coverage Incorporate Market-Wide Information? Entropy 2024, 26, 285. https://doi.org/10.3390/e26040285
Hou Y, Hu C. Why Does Cross-Sectional Analyst Coverage Incorporate Market-Wide Information? Entropy. 2024; 26(4):285. https://doi.org/10.3390/e26040285
Chicago/Turabian StyleHou, Yunfei, and Changsheng Hu. 2024. "Why Does Cross-Sectional Analyst Coverage Incorporate Market-Wide Information?" Entropy 26, no. 4: 285. https://doi.org/10.3390/e26040285
APA StyleHou, Y., & Hu, C. (2024). Why Does Cross-Sectional Analyst Coverage Incorporate Market-Wide Information? Entropy, 26(4), 285. https://doi.org/10.3390/e26040285