Adaptive Space-Aware Infotaxis II as a Strategy for Odor Source Localization
Abstract
:1. Introduction
2. Materials
2.1. Isometric Plume Model
2.2. Gas Sensing Model
2.3. Cognitive Search Strategy
2.3.1. Information State
2.3.2. Reward Function
2.3.3. A Set of Admissible Actions
3. Adaptive Space-Aware Infotaxis II Search Scheme
3.1. Construction of Space-Aware Infotaxis II
3.2. Adaptive Navigation-Updated Mechanism
3.3. Finding Optimal Information Adaptive Parameters Based on ACSSA
3.3.1. Multi-Peak Optimization Problem
3.3.2. Adaptive Cosine Salp Swarm Algorithm
4. Simulations and Discussion
- (1)
- The number of search iteration steps: The sum of steps moved by the robot to complete the search task. One of the moving steps refers to the whole process of the robot staying at the original position, updating the PDF, making a moving decision, and moving to the next target point. The number of iterative steps is the basic index to measure the efficiency of the search methods.
- (2)
- The time to find the source: Since ESAInfotaxis II and ASAInfotaxis II are not fixed-step searches, the evaluation metric of the search time was added to further judge the search efficiency of the algorithms.
- (3)
- Information collection rate: The change in information entropy with the number of search steps in the source search process. The change in information entropy reflects the collection of environmental information in the robot search process in real time.
- (4)
- PDFs of the arrival times: The variation in PDFs with the search time; arrival time pdfs can respond to the ability to find the source of robots.
- (1)
- Search iteration steps of the robot reach 500, but the odor source is not found.
- (2)
- The robot is considered to have found the odor source if its distance from the source is within the specified range .
4.1. Simulations for Two-Dimensional Scenarios
4.1.1. Two-Dimensional Simulation Scenario
4.1.2. Two-Dimensional Simulation Results
4.2. Simulations for Three-Dimensional Scenarios
4.2.1. Three-Dimensional Simulation Scenario
4.2.2. Three-Dimensional Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Function | Dim | Range | Optimum Value | |
---|---|---|---|---|
Ackley | 1 | [−32, 32] | 0 | |
Rastrigin | 1 | [−5.12, 5.12] | 0 | |
Griewank | 1 | [−600, 600] | 0 | |
Schaffer N.2 | 2 | [−100, 100] | 0 | |
Schaffer N.4 | 2 | [−100, 100] | 0.292579 | |
Schaffer N.6 | 2 | [−100, 100] | 0 | |
Styblinski–Tang | 1 | [−5, 5] | −39.16599 | |
Bukin_6 | 2 | 0 |
Algorithm | Specific Parameter Settings |
---|---|
PSO | |
PFA | |
WOA | |
IWOA | |
HHO | |
SOS | |
SCA | |
SSA | |
MVO | |
SPBO | |
MBO | |
JSO | |
IGWO | |
FDA | |
DA | |
ALO | |
AOA | |
CS | |
GOA | |
GA |
Function | Criteria | PSO | PFA | WOA | IWOA | HHO | SOS | SCA | SSA | MVO | SPBO |
---|---|---|---|---|---|---|---|---|---|---|---|
Ackley | Mean | 0.0089 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0006 | 0.0575 |
Std | 0.0139 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.2132 | |
Time | 2.5075 | 87.3500 | 2.7731 | 6.2540 | 3.0480 | 5.2511 | 2.8093 | 2.5220 | 1.9123 | 4.3905 | |
Rastrigin | Mean | 0.0013 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2839 |
Std | 0.0029 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6607 | |
Time | 2.3012 | 78.0795 | 2.3197 | 5.7256 | 2.7999 | 3.6491 | 2.4768 | 2.3112 | 1.6072 | 3.8947 | |
Griewank | Mean | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 |
Std | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | |
Time | 2.1831 | 77.9928 | 2.4811 | 5.7041 | 2.8670 | 4.4761 | 2.3947 | 2.3123 | 1.2743 | 3.9660 | |
Schaffer N.2 | Mean | 0.0 | 0.0 | 0.0 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0067 |
Std | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0016 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0082 | |
Time | 2.2509 | 80.7760 | 2.6066 | 5.8712 | 2.7963 | 4.7656 | 2.5900 | 2.1123 | 1.7282 | 4.1343 | |
Schaffer N.4 | Mean | 0.292761 | 0.292591 | 0.292658 | 0.292587 | 0.293011 | 0.292580 | 0.292655 | 0.292619 | 0.292586 | 0.294534 |
Std | 0.0002 | 0.0 | 0.0001 | 0.0 | 0.0007 | 0.0 | 0.0001 | 0.0001 | 0.0 | 0.0020 | |
Time | 2.4200 | 81.782 | 2.5146 | 5.8164 | 2.8567 | 4.8856 | 2.6282 | 2.2947 | 1.7542 | 4.1134 | |
Schaffer N.6 | Mean | 0.0084 | 0.0056 | 0.0 | 0.0 | 0.0071 | 0.0 | 0.0053 | 0.0 | 0.0094 | 0.0113 |
Std | 0.0029 | 0.0047 | 0.0 | 0.0 | 0.0043 | 0.0 | 0.0047 | 0.0 | 0.0017 | 0.0059 | |
Time | 2.2076 | 82.7493 | 2.4682 | 5.5752 | 2.6915 | 4.3382 | 2.5646 | 2.3579 | 1.7895 | 4.1644 | |
Styblinski–Tang | Mean | −39.16609 | −39.16617 | −39.16617 | −39.16617 | −39.16616 | −39.16617 | −39.16601 | −39.16617 | −38.69494 | −39.13254 |
Std | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 2.5376 | 0.1102 | |
Time | 2.0835 | 72.2040 | 2.0767 | 5.3305 | 2.8530 | 4.1391 | 2.3961 | 2.1449 | 1.5155 | 3.9183 | |
Bukin_6 | Mean | 4.5934 | 0.0955 | 0.1 | 0.1 | 1.3550 | 0.1038 | 0.6841 | 0.1 | 1.0947 | 5.7670 |
Std | 2.7638 | 0.0330 | 0.0 | 0.0 | 1.3874 | 0.0183 | 0.7055 | 0.0 | 0.4910 | 7.2578 | |
Time | 0.8791 | 23.3484 | 0.9719 | 2.3828 | 1.1133 | 1.8759 | 1.0460 | 0.9330 | 0.7453 | 1.6423 | |
Function | Criteria | MBO | JSO | IGWO | FDA | DA | ALO | AOA | CS | GOA | GA |
Ackley | Mean | 0.0040 | 0.0032 | 0.0 | 0.0 | 0.0011 | 0.0 | 1.5654 | 0.3197 | 0.0002 | 0.0001 |
Std | 0.0055 | 0.0029 | 0.0 | 0.0 | 0.0024 | 0.0 | 1.4184 | 0.4081 | 0.0008 | 0.0001 | |
Time | 1.6513 | 2.6549 | 7.2145 | 63.1317 | 38.0546 | 20.7061 | 2.6846 | 4.9786 | 13.4924 | 4.2537 | |
Rastrigin | Mean | 0.1693 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1856 | 0.4213 | 0.0995 | 0.0466 |
Std | 0.3699 | 0.0009 | 0.0 | 0.0 | 0.0001 | 0.0 | 1.2042 | 0.4773 | 0.2985 | 0.1838 | |
Time | 1.3953 | 2.1311 | 6.4451 | 59.1630 | 36.9516 | 14.9701 | 1.9045 | 4.2763 | 12.2868 | 3.6602 | |
Griewank | Mean | 0.0306 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0269 | 0.1537 | 0.0 | 0.0 |
Std | 0.0571 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0453 | 0.2506 | 0.0 | 0.0 | |
Time | 1.3753 | 2.5003 | 7.0041 | 56.6412 | 36.1668 | 19.6636 | 2.3902 | 0.6494 | 12.5253 | 3.7303 | |
Schaffer N.2 | Mean | 0.0150 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0095 | 0.0014 | 0.0045 | 0.0007 |
Std | 0.0201 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0095 | 0.0017 | 0.0067 | 0.0013 | |
Time | 1.4359 | 2.6264 | 7.0888 | 56.5816 | 36.7568 | 20.3590 | 2.5359 | 3.9743 | 12.9016 | 3.8950 | |
Schaffer N.4 | Mean | 0.303105 | 0.292909 | 0.292587 | 0.292579 | 0.292676 | 0.292665 | 0.297561 | 0.293003 | 0.294915 | 0.293242 |
Std | 0.0118 | 0.0003 | 0.0 | 0.0 | 0.0002 | 0.0002 | 0.0040 | 0.0006 | 0.0018 | 0.0007 | |
Time | 1.4997 | 2.5283 | 7.1459 | 58.4871 | 36.2815 | 20.2342 | 2.5560 | 4.4635 | 13.2616 | 4.1806 | |
Schaffer N.6 | Mean | 0.0418 | 0.0087 | 0.0 | 0.0020 | 0.0042 | 0.0071 | 0.0202 | 0.0097 | 0.0100 | 0.0088 |
Std | 0.0396 | 0.0018 | 0.0 | 0.0036 | 0.0048 | 0.0043 | 0.0131 | 0.0003 | 0.0056 | 0.0025 | |
Time | 1.4807 | 2.6265 | 6.9701 | 61.2268 | 35.1733 | 20.7181 | 2.6076 | 4.5070 | 12.6626 | 4.0441 | |
Styblinski–Tang | Mean | −38.22368 | −39.16615 | −39.16617 | −39.16617 | −39.16614 | −39.16617 | −37.98762 | −39.12722 | −39.16617 | −39.16617 |
Std | 3.5263 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2548 | 0.0699 | 0.0 | 0.0 | |
Time | 1.3130 | 2.4119 | 6.5984 | 54.7924 | 35.2751 | 19.3258 | 2.3063 | 3.9453 | 12.0077 | 3.4342 | |
Bukin_6 | Mean | 1.7159 | 2.3654 | 0.1 | 0.05 | 2.1321 | 0.2266 | 33.6252 | 6.2734 | 0.2261 | 0.2630 |
Std | 1.1010 | 1.0687 | 0.0 | 0.0001 | 1.5829 | 0.1322 | 20.1480 | 5.3777 | 0.2068 | 0.1325 | |
Time | 0.5719 | 0.9972 | 2.8712 | 21.7811 | 13.2006 | 9.9783 | 0.9815 | 1.7210 | 5.7485 | 1.5428 |
References
- Khalil, Y.F. A probabilistic visual-flowcharting-based model for consequence assessment of fire and explosion events involving leaks of flammable gases. J. Loss Prev. Process Ind. 2017, 50, 190–204. [Google Scholar] [CrossRef]
- Evangeliou, N.; Hamburger, T.; Cozic, A.; Balkanski, Y.; Stohl, A. Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements. Atmos. Chem. Phys. 2017, 17, 8805–8824. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Hutchinson, M.; Oh, H.; Chen, W.-H. A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Inf. Fusion 2017, 36, 130–148. [Google Scholar] [CrossRef]
- Hutchinson, M.; Liu, C.; Chen, W.-H. Information based mobile sensor planning for source term estimation of a non-continuous atmospheric release. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018. [Google Scholar]
- Ishida, H.; Wada, Y.; Matsukura, H. Chemical Sensing in Robotic Applications: A Review. IEEE Sens. J. 2012, 12, 3163–3173. [Google Scholar] [CrossRef]
- Hutchinson, M.; Liu, C.; Chen, W.H. Source term estimation of a hazardous airborne release using an unmanned aerial vehicle. J. Field Robot. 2019, 36, 797–817. [Google Scholar] [CrossRef]
- Shigaki, S.; Sakurai, T.; Ando, N.; Kurabayashi, D.; Kanzaki, R. Time-Varying Moth-Inspired Algorithm for Chemical Plume Tracing in Turbulent Environment. IEEE Robot. Autom. Lett. 2018, 3, 76–83. [Google Scholar] [CrossRef]
- Cremer, J.; Honda, T.; Tang, Y.; Wong-Ng, J.; Vergassola, M.; Hwa, T. Chemotaxis as a navigation strategy to boost range expansion. Nature 2019, 575, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Mao, W.; Tan, W.; Gao, J.; Zhang, Z.; Xie, Y. Emission source tracing based on bionic algorithm mobile sensors with artificial olfactory system. Robotica 2022, 40, 976–996. [Google Scholar] [CrossRef]
- Terutsuki, D.; Uchida, T.; Fukui, C.; Sukekawa, Y.; Okamoto, Y.; Kanzaki, R. Electroantennography-based Bio-hybrid Odor-detecting Drone using Silkmoth Antennae for Odor Source Localization. JoVE-J. Vis. Exp. 2021, 174, e62895. [Google Scholar] [CrossRef]
- Terutsuki, D.; Uchida, T.; Fukui, C.; Sukekawa, Y.; Okamoto, Y.; Kanzaki, R. Real-time odor concentration and direction recognition for efficient odor source localization using a small bio-hybrid drone. Sens. Actuators B Chem. 2021, 339, 129770. [Google Scholar] [CrossRef]
- Jiang, M.; Liao, Y.; Guo, X.; Cai, H.; Jiang, W.; Yang, Z.; Li, F.; Liu, F. A comparative experimental study of two multi-robot olfaction methods: Towards locating time-varying indoor pollutant sources. Build. Environ. 2022, 207, 108560. [Google Scholar] [CrossRef]
- Gunawardena, N.; Leang, K.K.; Pardyjak, E. Particle swarm optimization for source localization in realistic complex urban environments. Atmos. Environ. 2021, 262, 118636. [Google Scholar] [CrossRef]
- Chen, X.; Fu, C.; Huang, J. A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study. Measurement 2021, 183, 109725. [Google Scholar] [CrossRef]
- Oladyshkin, S.; Mohammadi, F.; Kroeker, I.; Nowak, W. Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy 2020, 22, 890. [Google Scholar] [CrossRef] [PubMed]
- Cassandra, A.R.; Kaelbling, L.P.; Kurien, J.A. Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS ’96, Osaka, Japan, 4–8 November 1996. [Google Scholar]
- Vergassola, M.; Villermaux, E.; Shraiman, B.I. ‘Infotaxis’ as a strategy for searching without gradients. Nature 2007, 445, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Ristic, B.; Skvortsov, A.; Gunatilaka, A. A study of cognitive strategies for an autonomous search. Inf. Fusion 2016, 28, 1–9. [Google Scholar] [CrossRef]
- Ristic, B.; Skvortsov, A.; Walker, A. Autonomous Search for a Diffusive Source in an Unknown Structured Environment. Entropy 2014, 16, 789–813. [Google Scholar] [CrossRef]
- Eggels, A.W.; Kunnen, R.P.J.; Koren, B.; Tijsseling, A.S. Infotaxis in a turbulent 3D channel flow. J. Comput. Appl. Math. 2017, 310, 44–58. [Google Scholar] [CrossRef]
- Ruddick, J.; Marjovi, A.; Rahbar, F.; Martinoli, A. Design and Performance Evaluation of an Infotaxis-Based Three-Dimensional Algorithm for Odor Source Localization. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Hutchinson, M.; Oh, H.; Chen, W.-H. Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions. Inf. Fusion 2018, 42, 179–189. [Google Scholar] [CrossRef]
- Song, C.; He, Y.; Lei, X. Autonomous Searching for a Diffusive Source Based on Minimizing the Combination of Entropy and Potential Energy. Sensors 2019, 19, 2465. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, F.; Marjovi, A.; Martinoli, A. Design and Performance Evaluation of an Algorithm Based on Source Term Estimation for Odor Source Localization. Sensors 2019, 19, 656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.W.; Harlim, J. Parameter Estimation with Data-Driven Nonparametric Likelihood Functions. Entropy 2019, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Wang, Y.; Chen, B.; Zhao, Y.; Zhu, Z. A strategy for autonomous source searching using the Gaussian Mixture Model to fit the estimate of the source location. In Proceedings of the 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021. [Google Scholar]
- Park, M.; An, S.; Seo, J.; Oh, H. Autonomous Source Search for UAVs Using Gaussian Mixture Model-Based Infotaxis: Algorithm and Flight Experiments. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4238–4254. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, B.; Zhu, Z.; Chen, F.; Wang, Y.; Ji, Y. Searching the diffusive source in an unknown obstructed environment by cognitive strategies with forbidden areas. Build. Environ. 2020, 186, 107349. [Google Scholar] [CrossRef]
- An, S.; Park, M.; Oh, H. Receding-horizon RRT-Infotaxis for autonomous source search in urban environments. Aerosp. Sci. Technol. 2022, 120, 107276. [Google Scholar] [CrossRef]
- Shraiman, B.I.; Siggia, E.D. Scalar turbulence. Nature 2000, 405, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Falkovich, G.; Gawedzki, K.; Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys. 2001, 73, 913–975. [Google Scholar] [CrossRef]
- Heinonen, R.A.; Biferale, L.; Celani, A.; Vergassola, M. Optimal policies for Bayesian olfactory search in turbulent flows. Phys. Rev. E 2023, 107, 055105. [Google Scholar] [CrossRef]
- Smoluchowski, M.V. Versuch einer mathematischen theorie der koagulationskinetic kolloider Lösungen. Z. Phys. Chem. 1917, 92, 129–168. [Google Scholar]
- Ristic, B.; Angley, D.; Moran, B.; Palmer, J.L. Autonomous Multi-Robot Search for a Hazardous Source in a Turbulent Environment. Sensors 2017, 17, 918. [Google Scholar] [CrossRef]
- Song, C.; He, Y.; Ristic, B.; Lei, X. Collaborative infotaxis: Searching for a signal-emitting source based on particle filter and Gaussian fitting. Robot. Auton. Syst. 2020, 125, 103414. [Google Scholar] [CrossRef]
- Loisy, A.; Heinonen, R.A. Deep reinforcement learning for the olfactory search POMDP: A quantitative benchmark. Eur. Phys. J. E 2023, 46, 17. [Google Scholar] [CrossRef]
- Fan, S.; Hao, D.; Sun, X.; Sultan, Y.M.; Li, Z.; Xia, K. A Study of Modified Infotaxis Algorithms in 2D and 3D Turbulent Environments. Comput. Intell. Neurosci. 2020, 2020, 4159241. [Google Scholar] [CrossRef]
- Loisy, A.; Eloy, C. Searching for a source without gradients: How good is infotaxis and how to beat it. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2022, 478, 20220118. [Google Scholar] [CrossRef]
Algorithms | 4-Direction Set | 6-Direction Set | 8-Direction Set |
---|---|---|---|
Infotaxis | 173.48 | 156.64 | 133.92 |
Infotaxis II | 154.94 | 134.98 | 119.36 |
Entrotaxis | 182.56 | 160.22 | 149.48 |
Sinfotaxis | 189.14 | 167.40 | 157.04 |
Space-aware Infotaxis | 174.16 | 155.76 | 142.28 |
SAInfotaxis II | 153.58 | 171.94 | 150.70 |
ESAInfotaxis II | 99.28 | 74.66 | 82.52 |
ASAInfotaxis II | 85.28 | 55.18 | 66.92 |
Algorithms | 6-Direction Set | 14-Direction Set | 26-Direction Set |
---|---|---|---|
Infotaxis | 139.60 | 130.34 | 116.66 |
Infotaxis II | 185.72 | 196.88 | 168.88 |
Entrotaxis | 168.06 | 160.22 | 136.66 |
Sinfotaxis | 415.76 | 408.83 | 334.04 |
Space-aware Infotaxis | 163.18 | 109.90 | 127.40 |
SAInfotaxis II | 186.74 | 177.12 | 160.54 |
ESAInfotaxis II | 21.56 | 13.44 | 13.32 |
ASAInfotaxis II | 13.72 | 9.14 | 8.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhang, Y.; Fan, S. Adaptive Space-Aware Infotaxis II as a Strategy for Odor Source Localization. Entropy 2024, 26, 302. https://doi.org/10.3390/e26040302
Liu S, Zhang Y, Fan S. Adaptive Space-Aware Infotaxis II as a Strategy for Odor Source Localization. Entropy. 2024; 26(4):302. https://doi.org/10.3390/e26040302
Chicago/Turabian StyleLiu, Shiqi, Yan Zhang, and Shurui Fan. 2024. "Adaptive Space-Aware Infotaxis II as a Strategy for Odor Source Localization" Entropy 26, no. 4: 302. https://doi.org/10.3390/e26040302
APA StyleLiu, S., Zhang, Y., & Fan, S. (2024). Adaptive Space-Aware Infotaxis II as a Strategy for Odor Source Localization. Entropy, 26(4), 302. https://doi.org/10.3390/e26040302