Canonical vs. Grand Canonical Ensemble for Bosonic Gases under Harmonic Confinement
Abstract
:1. Introduction
2. Relation between Canonical and Grand Canonical Ensembles
2.1. The Kernel
2.2. Thermodynamic Limit
3. Ideal Bose Gas in a Harmonic Trap
3.1. The Model
3.2. Grand Canonical Formulation
3.2.1. Equation of State
3.2.2. Bose-Einstein Phase Transition
3.3. The Kac Kernel
3.4. Density Fluctuations and Grand Canonical Catastrophe
Spatial Density–Density Correlation Function of the Condensate
3.5. Internal Energy and Specific Heat
3.5.1. Grand Canonical Ensemble
3.5.2. Canonical Ensemble
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Anderson, M.; Ensher, J.; Matthews, M.; Wieman, C.; Cornell, E. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 1995, 269, 198. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.; Mewes, M.O.; Andrews, M.; van Druten, N.; Durfee, D.; Kurn, D.; Ketterle, W. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 1995, 75, 3969. [Google Scholar] [CrossRef] [PubMed]
- Bradley, C.; Sackett, C.; Tollett, J.; Hulet, R. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 1995, 75, 1687. [Google Scholar] [CrossRef] [PubMed]
- Cornell, E.A.; Wieman, C.E. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 2002, 74, 875. [Google Scholar] [CrossRef]
- Leggett, A.J. Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 2001, 73, 307. [Google Scholar] [CrossRef]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463. [Google Scholar] [CrossRef]
- Fetter, A.L. Rotating trapped bose-einstein condensates. Rev. Mod. Phys. 2009, 81, 647. [Google Scholar] [CrossRef]
- Zapf, V.; Jaime, M.; Batista, C. Bose-Einstein condensation in quantum magnets. Rev. Mod. Phys. 2014, 86, 563. [Google Scholar] [CrossRef]
- Klaers, J.; Schmitt, J.; Vewinger, F.; Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 2010, 468, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M. Bose–Einstein condensation of paraxial light. Appl. Phys. B 2011, 105, 17–33. [Google Scholar] [CrossRef]
- Schmitt, J.; Damm, T.; Dung, D.; Vewinger, F.; Klaers, J.; Weitz, M. Observation of grand-canonical number statistics in a photon Bose-Einstein condensate. Phys. Rev. Lett. 2014, 112, 030401. [Google Scholar] [CrossRef] [PubMed]
- Damm, T.; Schmitt, J.; Liang, Q.; Dung, D.; Vewinger, F.; Weitz, M.; Klaers, J. Calorimetry of a Bose–Einstein-condensed photon gas. Nat. Commun. 2016, 7, 11340. [Google Scholar] [CrossRef] [PubMed]
- Damm, T.; Dung, D.; Vewinger, F.; Weitz, M.; Schmitt, J. First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas. Nat. Commun. 2017, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J. Dynamics and correlations of a Bose–Einstein condensate of photons. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 173001. [Google Scholar] [CrossRef]
- Öztürk, F.E.; Vewinger, F.; Weitz, M.; Schmitt, J. Fluctuation-dissipation relation for a Bose-Einstein condensate of photons. Phys. Rev. Lett. 2023, 130, 033602. [Google Scholar] [CrossRef] [PubMed]
- Campa, A.; Dauxois, T.; Ruffo, S. Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 2009, 480, 57–159. [Google Scholar] [CrossRef]
- Ziff, R.M.; Uhlenbeck, G.E.; Kac, M. The ideal Bose-Einstein gas, revisited. Phys. Rep. 1977, 32, 169–248. [Google Scholar] [CrossRef]
- Holthaus, M.; Kalinowski, E.; Kirsten, K. Condensate fluctuations in trapped Bose gases: Canonical vs. microcanonical ensemble. Ann. Phys. 1998, 270, 198–230. [Google Scholar] [CrossRef]
- Fujiwara, I.; Ter Haar, D.; Wergeland, H. Fluctuations in the population of the ground state of Bose systems. J. Stat. Phys. 1970, 2, 329–346. [Google Scholar] [CrossRef]
- Kocharovsky, V.V.; Kocharovsky, V.V.; Holthaus, M.; Ooi, C.R.; Svidzinsky, A.; Ketterle, W.; Scully, M.O. Fluctuations in ideal and interacting Bose–Einstein condensates: From the laser phase transition analogy to squeezed states and Bogoliubov quasiparticles. Adv. At. Mol. Opt. Phys. 2006, 53, 291–411. [Google Scholar]
- Yukalov, V. Bose-Einstein condensation and gauge symmetry breaking. Laser Phys. Lett. 2007, 4, 632. [Google Scholar] [CrossRef]
- Crisanti, A.; Sarracino, A.; Zannetti, M. Condensation versus ordering: From the spherical models to Bose-Einstein condensation in the canonical and grand canonical ensemble. Phys. Rev. Res. 2019, 1, 023022. [Google Scholar] [CrossRef]
- Berlin, T.H.; Kac, M. The spherical model of a ferromagnet. Phys. Rev. 1952, 86, 821. [Google Scholar] [CrossRef]
- Zannetti, M. The grand canonical catastrophe as an instance of condensation of fluctuations. Europhys. Lett. 2015, 111, 20004. [Google Scholar] [CrossRef]
- Holmes, M.H. Introduction to Perturbation Methods; Springer Science & Business Media: New York, NY, USA, 2012; Volume 20. [Google Scholar]
- Kac, M.; Thompson, C.J. Correlation functions in the spherical and mean spherical models. J. Math. Phys. 1977, 18, 1650–1653. [Google Scholar] [CrossRef]
- Salasnich, L. Quantum Physics of Light and Matter; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M. Statistical physics of Bose-Einstein-condensed light in a dye microcavity. Phys. Rev. Lett. 2012, 108, 160403. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, S.; Holthaus, M. λ-transition to the Bose-Einstein condensate. Zeit. Naturforschung A 1995, 50, 921–930. [Google Scholar] [CrossRef]
- Morales-Amador, M.I.; Romero-Rochin, V.; Paredes, R. Critical exponents and fluctuations at BEC in a 2D harmonically trapped ideal gas. J. Phys. B At. Mol. Opt. Phys. 2024, 57, 045301. [Google Scholar] [CrossRef]
- Dingle, R.B. Asymptotic Expansions; Academic Press: Cambridge, CA, USA, 1973. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisanti, A.; Salasnich, L.; Sarracino, A.; Zannetti, M. Canonical vs. Grand Canonical Ensemble for Bosonic Gases under Harmonic Confinement. Entropy 2024, 26, 367. https://doi.org/10.3390/e26050367
Crisanti A, Salasnich L, Sarracino A, Zannetti M. Canonical vs. Grand Canonical Ensemble for Bosonic Gases under Harmonic Confinement. Entropy. 2024; 26(5):367. https://doi.org/10.3390/e26050367
Chicago/Turabian StyleCrisanti, Andrea, Luca Salasnich, Alessandro Sarracino, and Marco Zannetti. 2024. "Canonical vs. Grand Canonical Ensemble for Bosonic Gases under Harmonic Confinement" Entropy 26, no. 5: 367. https://doi.org/10.3390/e26050367
APA StyleCrisanti, A., Salasnich, L., Sarracino, A., & Zannetti, M. (2024). Canonical vs. Grand Canonical Ensemble for Bosonic Gases under Harmonic Confinement. Entropy, 26(5), 367. https://doi.org/10.3390/e26050367