Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives
Abstract
:1. Introduction
2. Results
2.1. What Is Information? The Meaning of the Landauer Principle
2.2. The Landauer Limit and the Margolus–Levitin Limiting Principle
2.3. The Landauer Limit and the Bekenstein Bound
2.4. The Abbe Diffraction Limit and the Landauer Principle
2.5. Breaking the Landauer Limit
2.6. The Landauer Principle and Thermodynamics of Small Systems
2.7. The Landauer Principle and the “It from Bit” Archibald Wheeler Paradigm
2.8. Experimental Verification of the Landauer Principle
2.9. Landauer Limit in the Context of Logical and Thermodynamic Irreversibility
2.10. Generalization of the Landauer Principle
2.11. Criticism and Objections to the Landauer Principle
2.12. The Landauer Principle: Open Questions, Perspectives, and Challenges
- (i)
- The exact place of the Landauer principle in the structure of thermodynamics should be clarified. Thermodynamics, in contrast to other fields of physics, enables a completely axiomatic approach, as suggested by Carathéodory [117,118,119]. The second law of thermodynamics was formulated by Carathéodory as follows: “In the neighborhood of any equilibrium state of a system (of any number of thermodynamic coordinates), there exist states that are inaccessible by reversible adiabatic processes.” It seems to be instructive to re-shape the axiomatic thermodynamics with the use of the Landauer principle.
- (ii)
- A relativistic extension of the Landauer principle remains one of the unsolved problems (the problem of the accurate derivation of the relativistic transformation of the temperature also remains open [97,98,99,100,101,102]). This problem is closely related to general cosmology. Calculation of the cosmological constant Λ emerging from the Landauer principle was reported [120].
- (iii)
- It is important to implement the Landauer principle in the development of optimal computational protocols, providing minimal dissipation [37,43,121]. Limitations imposed by the Margolus–Levitin limiting principle should be considered (see Section 2.2). The construction of optimal computers remains an open task and is deeply discussed in Ref. [122], in which restrictions imposed on computation by fundamental physical laws are deeply discussed. Ref. [122] is strongly recommended for readers interested in the physics of computation. It was also mentioned that the transfer of entropy and not entropy itself restricts optimal computational protocols [123].
- (iv)
- The philosophical meaning of the Landauer principle should be clarified [124].
3. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.C.; Huang, K.; Xiao, Y.-F.; Yang, L.; Qiu, C.W. What limits limits? Nat. Sci. Rev. 2021, 8, nwaa210. [Google Scholar] [CrossRef] [PubMed]
- Markov, I. Limits on fundamental limits to computation. Nature 2014, 512, 147–154. [Google Scholar] [CrossRef]
- Hecht, E. Chapter 13 Modern Optics. In Optics, 4th ed.; Addison-Wesley: Boston, MA, USA, 2002; pp. 609–611. [Google Scholar]
- Born, M.; Wolf, E. Chapter 8 Elements of the theory of diffraction. In Principles of Optics, 6th ed.; Pergamon Press: Oxford, UK, 1986; pp. 419–424. [Google Scholar]
- Zuo, R.; Liu, W.; Cheng, H.; Chen, S.; Tian, J. Breaking the Diffraction Limit with Radially Polarized Light Based on Dielectric Metalenses. Adv. Opt. Mater. 2018, 6, 1800795. [Google Scholar] [CrossRef]
- Einstein, A. Chapter XXII. In Relativity: The Special and General Theory; Methuen & Co.: London, UK, 1920; pp. 86–97. [Google Scholar]
- Fayngold, M. Chapter 2. In Special Relativity and How It Works; John Wiley & Sons—VCH Verlag: Weinheim, Germany, 2008; pp. 17–41. [Google Scholar]
- Ellis, G.F.R.; Uzan, J.-P. c is the speed of light, isn’t it? Am. J. Phys. 2005, 73, 240–247. [Google Scholar] [CrossRef]
- Anber, M.M.; Donoghue, J.F. Emergence of a universal limiting speed. Phys. Rev. D 2011, 83, 105027. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Chapter 2. In Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Pergamon Press: Oxford, UK, 1977; Volume 3, pp. 46–49. [Google Scholar]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics; Wiley-Interscience: Hoboken, NJ, USA, 1996; pp. 231–233. [Google Scholar]
- Bremermann, H.J. Optimization through evolution and recombination. In Self-Organizing Systems 1962; Yovits, M.C., Jacobi, G.T., Goldstein, G.D., Eds.; Spartan Books: Washington, DC, USA, 1962; pp. 93–106. [Google Scholar]
- Mandelstam, L.; Tamm, I. The uncertainty relation between energy and time in non-relativistic quantum mechanics. In Selected Papers; Bolotovskii, B.M., Frenkel, V.Y., Peierls, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Hörnedal, N.; Sönnerborn, O. Margolus-Levitin quantum speed limit for an arbitrary fidelity. Phys. Rev. Res. 2023, 5, 043234. [Google Scholar] [CrossRef]
- Margolus, M.; Levitin, L.B. The maximum speed of dynamical evolution. Physica D 1998, 120, 188–195. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287–298. [Google Scholar] [CrossRef]
- Anderson, J.B.; Johnnesson, R. Chapter 1. In Understanding Information Transmission; IEEE Press: Piscataway, NJ, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 2–29. [Google Scholar]
- Ash, R.B. Chapter 1. In Information Theory; Dover Publications: Mineola, NY, USA, 1990; pp. 2–24. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Ben Naim, A. Shannon’s Measure of information and Boltzmann’s H-Theorem. Entropy 2017, 19, 48. [Google Scholar] [CrossRef]
- Ben-Naim, A. Information Theory; World Scientific: Singapore, 2017. [Google Scholar]
- Ben-Naim, A. A Farewell to Entropy: Statistical Thermodynamics Based on Information; World Scientific: Singapore, 2008. [Google Scholar]
- Ben Naim, A. An Informational Theoretical Approach to the Entropy of Liquids and Solutions. Entropy 2018, 20, 514. [Google Scholar] [CrossRef] [PubMed]
- Ben-Naim, A. Entropy, the Truth the Whole Truth and Nothing but the Truth; World Scientific: Singapore, 2016. [Google Scholar]
- Landauer, R. Dissipation and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183. [Google Scholar] [CrossRef]
- Landauer, R. Information is physical. Phys. Today 1991, 44, 23–29. [Google Scholar] [CrossRef]
- Landauer, R. Minimal energy requirements in communication. Science 1996, 272, 1914–1918. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; Landauer, R. The fundamental physical limits of computation. Sci. Am. 1985, 253, 48–57. [Google Scholar] [CrossRef]
- Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Sagawa, T. Thermodynamic and logical reversibilities revisited. J. Stat. Mech. 2014, 2014, P03025. [Google Scholar] [CrossRef]
- Piechocinska, B. Information erasure. Phys. Rev. A 2000, 61, 062314. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Course of Theoretical Physics; Elsevier: Oxford, UK, 2011; Volume 5, p. 87. [Google Scholar]
- Kittel, C.; Kroemer, H. Chapter 3. In Thermal Physics, 2nd ed.; W. H. Freeman and Company: New York, NY, USA, 1980; pp. 61–62. [Google Scholar]
- Bormashenko, E. Generalization of the Landauer Principle for Computing Devices Based on Many-Valued Logic. Entropy 2019, 21, 1150. [Google Scholar] [CrossRef]
- Hartnoll, S.A.; Mackenzie, A.P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 2022, 94, 041002. [Google Scholar] [CrossRef]
- Proesmans, K.; Ehrich, J.; Bechhoefer, J. Optimal finite-time bit erasure under full control. Phys. Rev. E 2020, 102, 032105. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lee, S.; Kwon, H.; Park, H. Speed Limit for a Highly Irreversible Process and Tight Finite-Time Landauer’s Bound. Phys. Rev. Lett. 2022, 129, 120603. [Google Scholar] [CrossRef] [PubMed]
- Van Vu, T.; Saito, K. Finite-Time Quantum Landauer Principle and Quantum Coherence. Phys. Rev. Lett. 2022, 128, 010602. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-H.; Chen, J.F.; Sun, C.P.; Dong, H. Minimal energy cost to initialize a bit with tolerable error. Phys. Rev. E 2022, 106, 034112. [Google Scholar] [CrossRef] [PubMed]
- Rolandi, A.; Llobet, M.P. Finite time Landauer Principle beyond weak coupling. Quantum 2023, 7, 1161. [Google Scholar] [CrossRef]
- Reeb, D.; Wolf, M.N. An improved Landauer principle with finite-size corrections. New J. Phys. 2014, 16, 103011. [Google Scholar] [CrossRef]
- Deshpande, A.; Gopalkrishnanm, M.; Ouldridge, T.E.; Jones, N.S. Designing the optimal bit: Balancing energetic cost, speed and reliability. Proc. R. Soc. A 2017, 473, 0117. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, S.; McCloskey, R.; Ciccarello, F.; Paternostro, M.; Palma, G.M. Landauer’s Principle in Multipartite Open Quantum System Dynamics. Phys. Rev. Lett. 2015, 115, 120403. [Google Scholar] [CrossRef]
- Goold, J.; Paternostro, M.; Modi, K. Nonequilibrium Quantum Landauer Principle. Phys. Rev. Lett. 2015, 114, 060602. [Google Scholar] [CrossRef]
- Yan, L.L.; Xiong, T.P.; Rehan, K.; Zhou, F.; Liang, D.F.; Chen, L.; Zhang, J.Q.; Yang, W.L.; Ma, Z.H.; Feng, M. Single-Atom Demonstration of the Quantum Landauer Principle. Phys. Rev. Lett. 2018, 120, 210601. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.P.S.; Sarthour, R.S.; Souza, A.M.; Oliveira, I.S.; Goold, J.; Modi, K.; Soares-Pinto, D.O.; Céleri, L.C. Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit. Proc. R. Soc. A 2016, 472, 20150813. [Google Scholar] [CrossRef] [PubMed]
- Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Quantum and Information Thermodynamics: A Unifying Framework Based on Repeated Interactions. Phys. Rev. X 2017, 7, 021003. [Google Scholar] [CrossRef]
- Diana, G.; Bagci, G.B.; Esposito, M. Finite-time erasing of information stored in fermionic bits. Phys. Rev. E 2013, 87, 012111. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, T.; Ueda, M. Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure. Phys. Rev. Lett. 2009, 102, 250602. [Google Scholar] [CrossRef]
- Gavrilov, M. Erasure Without Work in an Asymmetric, Double-Well Potential. In Experiments on the Thermodynamics of Information Processing; Springer Theses; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 1929, 53, 840–856. [Google Scholar] [CrossRef]
- Aydin, A.; Sisman, A.; Kosloff, R. Landauer’s Principle in a Quantum Szilard Engine without Maxwell’s Demon. Entropy 2020, 22, 294. [Google Scholar] [CrossRef]
- Kim, S.W.; Sagawa, T.; De Liberato, S.; Ueda, M. Quantum Szilard Engine. Phys. Rev. Lett. 2011, 106, 070401. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, R.V. Small and Simple Systems That Favor the Arrow of Time. Entropy 2024, 26, 190. [Google Scholar] [CrossRef]
- Chamberlin, R.V. The Big World of Nanothermodynamics. Entropy 2015, 17, 52–73. [Google Scholar] [CrossRef]
- Hill, T.L. Thermodynamics of Small Systems, Parts I & II; Dover Publications: Mineola, NY, USA, 2013. [Google Scholar]
- Bormashenko, E.; Shkorbatov, A.; Gendelman, O. The Carnot engine based on the small thermodynamic system: Its efficiency and the ergodic hypothesis. Am. J. Phys. 2007, 75, 911–915. [Google Scholar] [CrossRef]
- Koski, E.V.; Maisi, V.F.; Pekola, J.P.; Averin, D. Experimental realization of a Szilard engine with a single electron. Proc. Natl. Acad. Sci. USA 2014, 111, 13786–13789. [Google Scholar] [CrossRef] [PubMed]
- Koski, J.V.; Kutvonen, A.; Khaymovich, I.M.; Ala-Nissila, T.; Pekola, J.P. On-Chip Maxwell’s Demon as an Information-Powered Refrigerator. Phys. Rev. Lett. 2015, 115, 260602. [Google Scholar] [CrossRef] [PubMed]
- Bannerman, T.; Price, G.N.; Viering, K.; Raizen, M. Single-photon cooling at the limit of trap dynamics: Maxwell’s demon near maximum efficiency. New J. Phys. 2009, 11, 063044. [Google Scholar] [CrossRef]
- Maruyama, K.; Morikoshi, F.; Vedral, V. Thermodynamical detection of entanglement by Maxwell’s demons. Phys. Rev. A 2005, 71, 012108. [Google Scholar] [CrossRef]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the 3rd International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 28–31 August 1989; pp. 354–368. [Google Scholar]
- Herrera, L. The mass of a bit of information and the Brillouin’s principle. Fluct. Noise Lett. 2014, 13, 1450002. [Google Scholar] [CrossRef]
- Brillouin, L. The negentropic principle of information. J. Appl. Phys. 1953, 24, 1152–1163. [Google Scholar] [CrossRef]
- Vopson, M. The mass-energy-information equivalence principle. AIP Adv. 2019, 9, 095206. [Google Scholar] [CrossRef]
- Vopson, M. The information catastrophe. AIP Adv. 2020, 10, 085014. [Google Scholar] [CrossRef]
- Vopson, M. Estimation of the information contained in the visible matter of the universe. AIP Adv. 2021, 11, 105317. [Google Scholar] [CrossRef]
- Vopson, M. Experimental protocol for testing the mass–energy–information equivalence principle. AIP Adv. 2022, 12, 035311. [Google Scholar] [CrossRef]
- Vopson, M.; Lepadatu, S. Second law of information dynamics. AIP Adv. 2022, 12, 075310. [Google Scholar] [CrossRef]
- Vopson, M. The second law of infodynamics and its implications for the simulated universe hypothesis. AIP Adv. 2023, 13, 105308. [Google Scholar] [CrossRef]
- Müller, J.G. Events as Elements of Physical Observation: Experimental Evidence. Entropy 2024, 26, 255. [Google Scholar] [CrossRef]
- Müller, J.G. Photon detection as a process of information gain. Entropy 2020, 22, 392. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.G. Information contained in molecular motion. Entropy 2019, 21, 1052. [Google Scholar] [CrossRef]
- Bormashenko, E. The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification? Entropy 2019, 21, 918. [Google Scholar] [CrossRef]
- Bormashenko, E. Informational Reinterpretation of the Mechanics Notions and Laws. Entropy 2020, 22, 631. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E. Rotating Minimal Thermodynamic Systems. Entropy 2022, 24, 168. [Google Scholar] [CrossRef] [PubMed]
- Fixsen, D.J. The Temperature of the cosmic microwave background. Astrophys. J. 2009, 707, 916–920. [Google Scholar] [CrossRef]
- Mikhailovsky, G.T.; Levich, A.P. Entropy, information and complexity or which aims the arrow of time? Entropy 2015, 17, 4863–4890. [Google Scholar] [CrossRef]
- Lloyd, S. Computational capacity of the Universe. Phys. Rev. Lett. 2002, 88, 237901. [Google Scholar] [CrossRef] [PubMed]
- Tatum, E.T.; Seshavatharam, U.V.S.; Lakshminarayan, S. Flat space cosmology as a mathematical model of quantum gravity or quantum cosmology. Int. J. Astron. Astrophys. 2015, 5, 133–140. [Google Scholar] [CrossRef]
- Rubin, V.C.; Burstein, D.; Ford, W.K., Jr.; Thonnard, N. Rotation velocities of 16 Sa galaxies and a comparison of Sa Sb and Sc rotation properties. Astrophys. J. 1985, 289, 81–104. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Finkbeiner, D.P.; Slatyer, T.R.; Weiner, N. A theory of dark matter. Phys. Rev. D 2009, 79, 015014. [Google Scholar] [CrossRef]
- de Swart, J.; Bertone, G.; van Dongen, J. How dark matter came to matter. Nat. Astron. 2017, 1, 0059. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef]
- Dodelson, S.; Widrow, L.M. Sterile neutrinos as dark matter. Phys. Rev. Lett. 1994, 72, 17. [Google Scholar] [CrossRef]
- Milgrom, M.; Sanders, R.H. Modified Newtonian dynamics and the dearth of dark matter in ordinary elliptical galaxies. Astrophys. J. 2003, 599, L25–L28. [Google Scholar] [CrossRef]
- Bormashenko, E. What Is Temperature? Modern Outlook on the Concept of Temperature. Entropy 2020, 22, 1366. [Google Scholar] [CrossRef]
- Orlov, A.O.; Lent, C.S.; Thorpe, C.C.; Boechler, G.P.; Snider, G.L. Experimental Test of Landauer’s Principle at the Sub-kBY Level. Jpn. J. Appl. Phys. 2012, 51, 06FE10. [Google Scholar] [CrossRef]
- Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.; Gavrilov, M.; Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 2014, 113, 190601. [Google Scholar] [CrossRef] [PubMed]
- Bennet, C.H. Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud. Hist. Philos. Mod. Phys. 2003, 34, 501–510. [Google Scholar] [CrossRef]
- Maroney, O.J.E. The (absence of a) relationship between thermodynamic and logical reversibility. Stud. Hist. Philos. Sci. B 2005, 36, 355–374. [Google Scholar] [CrossRef]
- Maroney, O.J.E. Generalizing Landauer’s principle. Phys. Rev. E 2009, 79, 031105. [Google Scholar] [CrossRef]
- Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium. Europhys. Lett. 2011, 95, 40004. [Google Scholar] [CrossRef]
- Timpanaro, A.M.; Santos, J.P.; Landi, G.T. Landauer’s Principle at Zero Temperature. Phys. Rev. Lett. 2020, 124, 240601. [Google Scholar] [CrossRef]
- Herrera, L. Landauer Principle and General Relativity. Entropy 2020, 22, 340. [Google Scholar] [CrossRef]
- Farías, C.; Pinto, V.A.; Moya, P.S. What is the temperature of a moving body? Sci. Rep. 2017, 7, 17657. [Google Scholar] [CrossRef]
- Landsberg, P.; Matsas, G.E.A. The impossibility of a universal relativistic temperature transformation. Phys. A Stat. Mech. Appl. 2004, 340, 92–94. [Google Scholar] [CrossRef]
- Papadatos, N.; Anastopoulos, C. Relativistic quantum thermodynamics of moving systems. Phys. Rev. D 2020, 102, 085005. [Google Scholar] [CrossRef]
- Papadatos, N. The Quantum Otto Heat Engine with a Relativistically Moving Thermal Bath. Int. J. Theor. Phys. 2021, 60, 4210–4223. [Google Scholar] [CrossRef]
- Güémez, J.; Mier, J.A. Relativistic thermodynamics on conveyor belt. Phys. Scr. 2023, 98, 025001. [Google Scholar] [CrossRef]
- Norton, J.D. Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Sci. B 2005, 36, 375–411. [Google Scholar] [CrossRef]
- Norton, J.D. Waiting for Landauer. Stud. Hist. Philos. Sci. B 2011, 42, 184–198. [Google Scholar] [CrossRef]
- Lu, Z.; Jarzynski, C. A Programmable Mechanical Maxwell’s Demon. Entropy 2019, 21, 65. [Google Scholar] [CrossRef] [PubMed]
- Leff, H.; Rex, A.F. (Eds.) Maxwell’s Demon 2 Entropy, Classical and Quantum Information, Computing; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Rex, A. Maxwell’s Demon—A Historical Review. Entropy 2017, 19, 240. [Google Scholar] [CrossRef]
- Bub, J. Maxwell’s Demon and the thermodynamics of computation. Stud. Hist. Philos. Sci. B 2000, 32, 569–579. [Google Scholar] [CrossRef]
- Lairez, D. Thermodynamical versus Logical Irreversibility: A Concrete Objection to Landauer’s Principle. Entropy 2023, 25, 1155. [Google Scholar] [CrossRef] [PubMed]
- Ladyman, J.; Presnell, S.; Short, A.J.; Groisman, B. The connection between logical and thermodynamic irreversibility. Stud. Hist. Philos. Sci. B 2007, 38, 58–79. [Google Scholar] [CrossRef]
- Ladyman, J.; Robertson, K. Landauer defended: Reply to Norton. Stud. Hist. Philos. Sci. B 2013, 44, 263–271. [Google Scholar] [CrossRef]
- Witkowski, C.; Brown, S.; Truong, K. On the Precise Link between Energy and Information. Entropy 2024, 26, 203. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.M.; Vaccaro, J.A. Beyond Landauer erasure. Entropy 2013, 15, 4956–4968. [Google Scholar] [CrossRef]
- Lostaglio, M.; Jennings, D.; Rudolph, T. Thermodynamic resource theories, non-commutativity and maximum entropy principles. New J. Phys. 2017, 19, 043008. [Google Scholar] [CrossRef]
- Buffoni, L.; Campisi, M. Spontaneous Fluctuation-Symmetry Breaking and the Landauer Principle. J. Stat. Phys. 2022, 186, 31. [Google Scholar] [CrossRef]
- Lairez, D. On the Supposed Mass of Entropy and That of Information. Entropy 2024, 26, 337. [Google Scholar] [CrossRef] [PubMed]
- Carathéodory, C. Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 1909, 67, 355–386. [Google Scholar] [CrossRef]
- Pogliani, L.; Berberan-Santos, M.N. Constantin Carathéodory and the axiomatic Thermodynamics. J. Math. Chem. 2000, 28, 313–324. [Google Scholar] [CrossRef]
- Bubuianu, I.; Vacaru, S.I. Constantin Carathéodory axiomatic approach and Grigory Perelman thermodynamics for geometric flows and cosmological solitonic solutions. Eur. Phys. J. Plus 2021, 136, 588. [Google Scholar] [CrossRef]
- Gkigkitzis, I.; Haranas, I.; Kirk, S. Number of information and its relation to the cosmological constant resulting from Landauer’s principle. Astrophys. Space Sci. 2013, 348, 553–557. [Google Scholar] [CrossRef]
- Gingrich, T.R.; Rotskoff, G.M.; Crooks, G.E.; Geissler, P.L. Near-optimal protocols in complex nonequilibrium transformations. Proc. Natl. Acad. Sci. USA 2016, 113, 10263–10268. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S. Ultimate physical limits to computation. Nature 2000, 406, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Prokopenko, M.; Lizier, J. Transfer Entropy and Transient Limits of Computation. Sci. Rep. 2015, 4, 5394. [Google Scholar] [CrossRef] [PubMed]
- Hemmo, M.; Shenker, O. The physics of implementing logic: Landauer’s principle and the multiple-computations theorem. Stud. Hist. Philos. Sci. B 2019, 68, 90–105. [Google Scholar] [CrossRef]
- Deffner, S. Quantum speed limits and the maximal rate of information production. Phys. Rev. R 2020, 2, 013161. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bormashenko, E. Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives. Entropy 2024, 26, 423. https://doi.org/10.3390/e26050423
Bormashenko E. Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives. Entropy. 2024; 26(5):423. https://doi.org/10.3390/e26050423
Chicago/Turabian StyleBormashenko, Edward. 2024. "Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives" Entropy 26, no. 5: 423. https://doi.org/10.3390/e26050423
APA StyleBormashenko, E. (2024). Landauer Bound in the Context of Minimal Physical Principles: Meaning, Experimental Verification, Controversies and Perspectives. Entropy, 26(5), 423. https://doi.org/10.3390/e26050423