Entropy Production of Run-and-Tumble Particles
Abstract
:1. Introduction
2. Theoretical Setup within the Fokker–Planck Equation
3. Run-and-Tumble Motion
3.1. Free Run-and-Tumble Particles
3.2. Run-and-Tumble Particles in Harmonic Potential
4. Anisotropic Run-and-Tumble Motion
5. General Run-and-Tumble Motion
- Photokinetic bacteria. Photokinetic bacteria are characterized by spatially varying speed which depends on local light intensity I [40]. For static nonhomogeneous light fields , we can describe the particle dynamics through a space-dependent speed [41] (we assume equal left and right speeds)
- Generic confining potentials. In the previous sections, we analyzed the case of a force field originated by quadratic potentials . It would be interesting to consider the generic confining potential [46,47]
- Ratchet potentials. Finally, we mention the study of the ratchet effect [5]. In this case, the active motion takes place in the presence of a periodic asymmetric potential, giving rise to unidirectional motion with a stationary flow of particles, . In the case of a piecewise-linear ratchet potential, the entropy production for particles with equal tumbling rates and speeds was analyzed in [48].
6. Run-and-Tumble Motion in
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Marchetti, M.C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T.B.; Prost, J.; Rao, M.; Simha, R.A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143. [Google Scholar] [CrossRef]
- Elgeti, J.; Winkler, R.G.; Gompper, G. Physics of microswimmers—Single particle motion and collective behavior: A review. Rep. Prog. Phys. 2015, 78, 056601. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, A.; Giardina, I.; Grigera, T.S. The physics of flocking: Correlation as a compass from experiments to theory. Phys. Rep. 2018, 728, 1–62. [Google Scholar] [CrossRef]
- Callegari, A.; Balda, A.B.; Argun, A.; Volpe, G. Playing with active matter. In Proceedings of the Optical Trapping and Optical Micromanipulation XX, SPIE, San Diego, CA, USA, 20–24 August 2023; p. PC1264909. [Google Scholar]
- Angelani, L.; Costanzo, A.; Di Leonardo, R. Active ratchets. Europhys. Lett. 2011, 96, 68002. [Google Scholar] [CrossRef]
- Battle, C.; Broedersz, C.P.; Fakhri, N.; Geyer, V.F.; Howard, J.; Schmidt, C.F.; MacKintosh, F.C. Broken detailed balance at mesoscopic scales in active biological systems. Science 2016, 352, 604–607. [Google Scholar] [CrossRef]
- Gnesotto, F.S.; Mura, F.; Gladrow, J.; Broedersz, C.P. Broken detailed balance and non-equilibrium dynamics in living systems: A review. Rep. Prog. Phys. 2018, 81, 066601. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.; Saglimbeni, F.; Sosa, V.C.; Di Leonardo, R.; Nath, B.; Puglisi, A. Thermodynamic limits of sperm swimming precision. PRX Life 2023, 1, 013003. [Google Scholar] [CrossRef]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Courier Corporation: North Chelmsford, MA, USA, 2013. [Google Scholar]
- Livi, R.; Politi, P. Nonequilibrium Statistical Physics: A Modern Perspective; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 2010, 1, 323–345. [Google Scholar] [CrossRef]
- Fodor, É.; Marchetti, M.C. The statistical physics of active matter: From self-catalytic colloids to living cells. Phys. A Stat. Mech. Its Appl. 2018, 504, 106–120. [Google Scholar] [CrossRef]
- Angelani, L. Optimal escapes in active matter. Eur. Phys. J. E 2024, 47, 9. [Google Scholar] [CrossRef]
- Caprini, L.; Marini Bettolo Marconi, U.; Löwen, H. Entropy production and collective excitations of crystals out of equilibrium: The concept of entropons. Phys. Rev. E 2023, 108, 044603. [Google Scholar] [CrossRef]
- Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Toner, J.; Tu, Y.; Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 2005, 318, 170–244. [Google Scholar] [CrossRef]
- Tailleur, J.; Cates, M.E. Statistical Mechanics of Interacting Run-and-Tumble Bacteria. Phys. Rev. Lett. 2008, 100, 218103. [Google Scholar] [CrossRef]
- Cates, M.E.; Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 2015, 6, 219–244. [Google Scholar] [CrossRef]
- O’Byrne, J.; Kafri, Y.; Tailleur, J.; van Wijland, F. Time irreversibility in active matter, from micro to macro. Nat. Rev. Phys. 2022, 4, 167–183. [Google Scholar] [CrossRef]
- Sekimoto, K. Stochastic Energetics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef]
- Peliti, L.; Pigolotti, S. Stochastic Thermodynamics: An Introduction; Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Fodor, É.; Nardini, C.; Cates, M.E.; Tailleur, J.; Visco, P.; Van Wijland, F. How far from equilibrium is active matter? Phys. Rev. Lett. 2016, 117, 038103. [Google Scholar] [CrossRef]
- Marconi, U.M.B.; Puglisi, A.; Maggi, C. Heat, temperature and Clausius inequality in a model for active Brownian particles. Sci. Rep. 2017, 7, 46496. [Google Scholar] [CrossRef]
- Shankar, S.; Marchetti, M.C. Hidden entropy production and work fluctuations in an ideal active gas. Phys. Rev. E 2018, 98, 020604. [Google Scholar] [CrossRef]
- Dabelow, L.; Bo, S.; Eichhorn, R. Irreversibility in active matter systems: Fluctuation theorem and mutual information. Phys. Rev. X 2019, 9, 021009. [Google Scholar] [CrossRef]
- Caprini, L.; Marconi, U.M.B.; Puglisi, A.; Vulpiani, A. The entropy production of Ornstein–Uhlenbeck active particles: A path integral method for correlations. J. Stat. Mech. Theory Exp. 2019, 2019, 053203. [Google Scholar] [CrossRef]
- Razin, N. Entropy production of an active particle in a box. Phys. Rev. E 2020, 102, 030103. [Google Scholar] [CrossRef] [PubMed]
- Cocconi, L.; Garcia-Millan, R.; Zhen, Z.; Buturca, B.; Pruessner, G. Entropy Production in Exactly Solvable Systems. Entropy 2020, 22, 1252. [Google Scholar] [CrossRef] [PubMed]
- Frydel, D. Intuitive view of entropy production of ideal run-and-tumble particles. Phys. Rev. E 2022, 105, 034113. [Google Scholar] [CrossRef] [PubMed]
- Berg, H.C. E. coli in Motion; Springer: New York, NY, USA, 2004. [Google Scholar]
- Berg, H.C. Random Walks in Biology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Cerino, L.; Puglisi, A. Entropy production for velocity-dependent macroscopic forces: The problem of dissipation without fluctuations. Europhys. Lett. 2015, 111, 40012. [Google Scholar] [CrossRef]
- Tomé, T. Entropy production in nonequilibrium systems described by a Fokker-Planck equation. Braz. J. Phys. 2006, 36, 1285–1289. [Google Scholar] [CrossRef]
- Schnitzer, M.J. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 1993, 48, 2553–2568. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.H. Some applications of persistent random walks and the telegrapher’s equation. Phys. A Stat. Mech. Its Appl. 2002, 311, 381–410. [Google Scholar] [CrossRef]
- Garcia-Millan, R.; Pruessner, G. Run-and-tumble motion in harmonic potential: Field theory and entropy production. J. Stat. Mech. Theory Exp. 2021, 6, 063203. [Google Scholar] [CrossRef]
- Frydel, D. Positing the problem of stationary distributions of active particles as third-order differential equation. Phys. Rev. E 2022, 106, 024121. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Hou, Z. Improving estimation of entropy production rate for run-and-tumble particle systems by high-order thermodynamic uncertainty relation. Phys. Rev. E 2023, 107, 024112. [Google Scholar] [CrossRef]
- Frangipane, G.; Dell’Arciprete, D.; Petracchini, S.; Maggi, C.; Saglimbeni, F.; Bianchi, S.; Vizsnyiczai, G.; Bernardini, M.L.; Di Leonardo, R. Dynamic density shaping of photokinetic E. coli. eLife 2018, 7, e36608. [Google Scholar] [CrossRef] [PubMed]
- Angelani, L.; Garra, R. Run-and-tumble motion in one dimension with space-dependent speed. Phys. Rev. E 2019, 100, 052147. [Google Scholar] [CrossRef] [PubMed]
- Cates, M.E. Diffusive transport without detailed balance in motile bacteria: Does microbiology need statistical physics? Rep. Prog. Phys. 2012, 75, 042601. [Google Scholar] [CrossRef] [PubMed]
- Angelani, L.; Di Leonardo, R.; Paoluzzi, M. First-passage time of run-and-tumble particles. Eur. Phys. J. E 2014, 37, 59. [Google Scholar] [CrossRef] [PubMed]
- Peruani, F.; Chaudhuri, D. Active stop and go motion: A strategy to improve spatial exploration? arXiv 2023, arXiv:2306.05647. [Google Scholar]
- Nguyen, M.D.; Pham, P.H.; Ngo, K.V.; Do, V.H.; Li, S.; Phan, T.V. Remark on the entropy production of adaptive run-and-tumble chemotaxis. Phys. A Stat. Mech. Its Appl. 2024, 634, 129452. [Google Scholar] [CrossRef]
- Dhar, A.; Kundu, A.; Majumdar, S.N.; Sabhapandit, S.; Schehr, G. Run-and-tumble particle in one-dimensional confining potentials: Steady-state, relaxation, and first-passage properties. Phys. Rev. E 2019, 99, 032132. [Google Scholar] [CrossRef]
- Guéneau, M.; Majumdar, S.N.; Schehr, G. Optimal mean first-passage time of a run-and-tumble particle in a class of one-dimensional confining potentials. Europhys. Lett. 2024, 145, 61002. [Google Scholar] [CrossRef]
- Roberts, C.; Zhen, Z. Run-and-tumble motion in a linear ratchet potential: Analytic solution, power extraction, and first-passage properties. Phys. Rev. E 2023, 108, 014139. [Google Scholar] [CrossRef] [PubMed]
- Martens, K.; Angelani, L.; Di Leonardo, R.; Bocquet, L. Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model. Eur. Phys. J. E 2012, 35, 84. [Google Scholar] [CrossRef] [PubMed]
- Nardini, C.; Fodor, E.; Tjhung, E.; van Wijland, F.; Tailleur, J.; Cates, M.E. Entropy Production in Field Theories without Time-Reversal Symmetry: Quantifying the Non-Equilibrium Character of Active Matter. Phys. Rev. X 2017, 7, 021007. [Google Scholar] [CrossRef]
- Caballero, F.; Cates, M.E. Stealth Entropy Production in Active Field Theories near Ising Critical Points. Phys. Rev. Lett. 2020, 124, 240604. [Google Scholar] [CrossRef] [PubMed]
- Paoluzzi, M. Scaling of the entropy production rate in a φ4 model of active matter. Phys. Rev. E 2022, 105, 044139. [Google Scholar] [CrossRef]
- Di Terlizzi, I.; Gironella, M.; Herráez-Aguilar, D.; Betz, T.; Monroy, F.; Baiesi, M.; Ritort, F. Variance sum rule for entropy production. Science 2024, 383, 971–976. [Google Scholar] [CrossRef]
- Ro, S.; Guo, B.; Shih, A.; Phan, T.V.; Austin, R.H.; Levine, D.; Chaikin, P.M.; Martiniani, S. Model-Free Measurement of Local Entropy Production and Extractable Work in Active Matter. Phys. Rev. Lett. 2022, 129, 220601. [Google Scholar] [CrossRef]
- Phan, T.V.; Li, S.; Ferreris, D.; Morris, R.; Bos, J.; Gou, B.; Martiniani, S.; Chaikin, P.; Kevrekidis, Y.G.; Austin, R.H. Social Physics of Bacteria: Avoidance of an Information Black Hole. arXiv 2024, arXiv:2401.16691. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoluzzi, M.; Puglisi, A.; Angelani, L. Entropy Production of Run-and-Tumble Particles. Entropy 2024, 26, 443. https://doi.org/10.3390/e26060443
Paoluzzi M, Puglisi A, Angelani L. Entropy Production of Run-and-Tumble Particles. Entropy. 2024; 26(6):443. https://doi.org/10.3390/e26060443
Chicago/Turabian StylePaoluzzi, Matteo, Andrea Puglisi, and Luca Angelani. 2024. "Entropy Production of Run-and-Tumble Particles" Entropy 26, no. 6: 443. https://doi.org/10.3390/e26060443
APA StylePaoluzzi, M., Puglisi, A., & Angelani, L. (2024). Entropy Production of Run-and-Tumble Particles. Entropy, 26(6), 443. https://doi.org/10.3390/e26060443