Viewpoint Selection for 3D-Games with f-Divergences
Abstract
:1. Introduction
- We use the f-divergences, and in particular Kullback–Leibler divergence, total variation, and -divergence as a measure of viewpoint in a scene consisting of 3D objects, extending from the use of K-L divergence as a viewpoint measure [5].
- We compute the frustum form factor with a Monte Carlo technique using the built-in ray tracing Unity routines. This allows for smooth computing and integrating the view-point measures in run-time.
- We define a target distribution that can be fine-tuned according to the importance assigned to each object and is extended with a wildcard, the background value which allows to regulate how much background should be visible from the camera.
- The frustum form-factor distribution is then compared, using the f-divergences, with the target distribution.
2. State of the Art
2.1. Viewpoint Selection
2.2. f-Divergences
- , and (⇒ for strictly convex).
- is convex in both p and q.
- .
- Given a transform T, (data processing inequality-DPI). In particular, T can be any clustering of indexes.
3. Proposed Method
3.1. Visibility
3.2. Hemisphere Form-Factors
3.3. Frustum Form-Factors and f-Divergence Frustum Viewpoint Measures
3.3.1. Kullback–Leibler Divergence
3.3.2. Total Variation and -Divergence Frustum Viewpoint Measures
3.4. Background Issues and Importance
3.5. Total Surface vs. Visible Surface
3.6. Particular Cases with Kullback–Leibler Divergence
3.7. K-L-Divergence Frustum Viewpoint Measure versus Frustum Viewpoint Entropy
3.8. TV Changes Smoothly
3.9. Rays vs. Projection
3.10. Implementation
4. Evaluation
4.1. Validation in a Video Game Environment
4.2. Computation Time
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Monte Carlo Computation of Form-Factors
References
- Chen, M.; Feixas, M.; Viola, I.; Bardera, A.; Shen, H.-W.; Sbert, M. Information Theory Tools for Visualization; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Sbert, M.; Feixas, M.; Rigau, J.; Chover, M.; Viola, I. Information Theory Tools for Computer Graphics; Synthesis Lectures on Computer Graphics and Animation, Morgan & Claypool; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Unity. Available online: https://unity.com/es (accessed on 28 November 2023).
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Sbert, M.; Plemenos, D.; Feixas, M.; Gonzalez, F. Viewpoint quality: Measures and applications. In Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging, Girona, Spain, 18–20 May 2005. [Google Scholar]
- Bonaventura, X.; Feixas, M.; Sbert, M.; Chuang, L.; Wallraven, C. A survey of viewpoint selection methods for polygonal models. Entropy 2016, 20, 370. [Google Scholar] [CrossRef]
- Sbert, M. An Integral Geometry Based Method for Fast Form Factor Computation. Comput. Graph. Forum 1993, 12, 409–420. [Google Scholar] [CrossRef]
- Sbert, M. The Use of Global Directions to Compute Radiosity: Global Monte Carlo Techniques. Ph.D. Thesis, Catalan Technical University, Barcelona, Spain, 1997. [Google Scholar]
- Siegel, R.; Howell, J.R. Thermal Radiation Heat Transfer; Taylor & Francis: Abingdon-on-Thames, UK, 1992. [Google Scholar]
- Cohen, M.F.; Wallace, J.R. Radiosity and Realistic Image Synthesis; The Morgan Kaufmann Series in Computer Graphics; Morgan Kaufmann: Burlington, MA, USA, 1981. [Google Scholar]
- Sillion, F.X.; Puech, C. Radiosity and Global Illumination; Morgan Kaufmann: Burlington, MA, USA, 1994. [Google Scholar]
- Dutre, P.; Bekaert, P.; Bala, K. Advanced Global Illumination, 1st ed.; A K Peters: Natick, MA, USA; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Plemenos, D.; Benayada, M. Intelligent display techniques in scene modelling. New techniques to automatically compute good views. In Proceedings of the International Conference GraphiCon’96, St Petersbourg, Russia, 1 July 1996. [Google Scholar]
- Vázquez, P.; Feixas, M.; Sbert, M.; Heidrich, W. Viewpoint Selection Using Viewpoint Entropy. In Proceedings of the Vision Modeling & Visualization Conference, Stuttgart, Germany, 21–23 November 2001. [Google Scholar]
- Andújar, C.; Vázquez, P.; Fairén, M. Way-finder: Guided tours through complex walkthrough models. In Computer Graphics Forum; Blackwell Publishing, Inc.: Oxford, UK, 2004; Volume 23, pp. 499–508. [Google Scholar]
- Zeng, R.; Wen, Y.; Zhao, W.; Liu, Y.J. View planning in robot active vision: A survey of systems, algorithms, and applications. Comput. Vis. Media 2020, 6, 225–245. [Google Scholar] [CrossRef]
- Bordoloi, U.D.; Shen, H.W. View selection for volume rendering. In Proceedings of the VIS 05. IEEE Visualization, 2005, Minneapolis, MN, USA, 23–28 October 2005. [Google Scholar]
- Polonsky, O.; Patané, G.; Biasotti, S.; Gotsman, C.; Spagnuolo, M. What’s in an image? Towards the computation of the “best” view of an object. Vis. Comput. 2005, 21, 840–847. [Google Scholar] [CrossRef]
- Secord, A.; Lu, J.; Finkelstein, A.; Singh, M.; Nealen, A. Perceptual models of viewpoint preference. ACM Trans. Graph. 2011, 30, 5. [Google Scholar] [CrossRef]
- Stoev, S.L.; Straßer, W. A case study on automatic camera placement and motion for visualizing historical data. In Proceedings of the IEEE Visualization 2002, Boston, MA, USA, 27 October–1 November 2002. [Google Scholar]
- Feixas, M.; Sbert, M.; Gonzalez, F. A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. 2008, 6, 1. [Google Scholar] [CrossRef]
- Vázquez, P.P. Automatic view selection through depth-based view stability analysis. Vis. Comput. 2009, 25, 441–449. [Google Scholar] [CrossRef]
- Delmerico, J.; Isler, S.; Sabzevari, R.; Scaramuzza, D. A comparison of volumetric information gain metrics for active 3D object reconstruction. Auton Robot. 2018, 42, 197–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Fei, G. Overview of 3D scene viewpoints evaluation method. Virtual Real. Intell. Hardw. 2019, 1, 341–385. [Google Scholar] [CrossRef]
- Sokolov, D.; Plemenos, D.; Tamine, K. Methods and data structures for virtual world exploration. Vis. Comput. 2006, 22, 506–516. [Google Scholar] [CrossRef]
- Lee, C.H.; Varshney, A.; Jacobs, D.W. Mesh saliency. In Proceedings of the SIGGRAPH05: Special Interest Group on Computer Graphics and Interactive Techniques Conference, Los Angeles, CA, USA, 31 July–4 August 2005. [Google Scholar]
- Attene, M.; Katz, S.; Mortara, M.; Patane, G.; Spagnuolo, M.; Tal, A. Mesh segmentation―A comparative study. In Proceedings of the IEEE International Conference on Shape Modeling and Applications, Matsushima, Japan, 14–16 June 2006. [Google Scholar]
- Takahashi, S.; Fujishiro, I.; Takeshima, Y.; Nishita, T. A feature-driven approach to locating optimal viewpoints for volume visualization. In Proceedings of the IEEE Conference on Visualization, Minneapolis, MN, USA, 23–28 October 2005. [Google Scholar]
- Ruiz, M.; Bardera, A.; Boada, I.; Viola, I.; Feixas, M.; Sbert, M. Automatic Transfer Functions Based on Informational Divergence. IEEE Trans. Vis. Comput. Graph. 2011, 17, 1932–1941. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.; Sekiyama, K. Optimal viewpoint selection based on aesthetic composition evaluation using Kullback–Leibler divergence. In Proceedings of the Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, 22–24 August 2016. [Google Scholar]
- Yokomatsu, T.; Sekiyama, K. Optimal Viewpoint Selection by Indoor Drone Using PSO and Gaussian Process With Photographic Composition Based on K-L Divergence. IEEE Access 2022, 10, 69972–69980. [Google Scholar] [CrossRef]
- Galvane, Q. Automatic Cinematography and Editing in Virtual Environments. Artificial Intelligence. Ph.D. Thesis, Université de Grenoble Alpes, Grenoble, France, 2015. [Google Scholar]
- Lino, C.; Christie, M. Efficient composition for virtual camera control. In Proceedings of the ACM SIGGRAPH Symposium on Computer Animation, Los Angeles, CA, USA, 5–9 August 2012. [Google Scholar]
- Zhang, Y.; Fei, G.; Gang, Y. 3D viewpoint estimation based on aesthetics. IEEE Access 2020, 8, 108602–108621. [Google Scholar] [CrossRef]
- Kiciroglu, S.; Rhodin, H.; Sinha, S.N.; Salzmann, M.; Fua, P. Activemocap: Optimized viewpoint selection for active human motion capture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Hartwig, S.; Schelling, M.; Onzenoodt, C.V.; Vázquez, P.P.; Hermosilla, P.; Ropinski, T. Learning human viewpoint preferences from sparsely annotated models. Comput. Graph. Forum 2022, 41, 453–466. [Google Scholar] [CrossRef]
- Polyanskiy, Y.; Wu, Y. Information Theory: From Coding to Learning; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Wikipedia. F-Divergence—Wikipedia, The Free Encyclopedia, Wikipedia, The Free Encyclopedia. Available online: http://en.wikipedia.org/w/index.php?title=F-divergence&oldid=1068442350 (accessed on 12 October 2023).
- Sason, I. On Data-Processing and Majorization Inequalities for f-Divergences with Applications. Entropy 2019, 21, 1022. [Google Scholar] [CrossRef]
- Sbert, M.; Szirmay-Kalos, L. Robust Multiple Importance Sampling with Tsallis ϕ-Divergences. Entropy 2022, 24, 1240. [Google Scholar] [CrossRef]
- Rigau, J.; Feixas, M.; Sbert, M. Information Theory Point Measures in a Scene; IIiA-00-08-RR, Institut d’Informàtica i Aplicacions, Universitat de Girona: Girona, Spain, 2000. [Google Scholar]
- Rubinstein, R.Y. Simulation and the Monte Carlo Method; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1981. [Google Scholar]
- Cohen, M.F.; Greenberg, D.P. The hemi-cube: A radiosity solution for complex environments. ACM SIGGRAPH Comput. Graph. 1985, 19, 31–40. [Google Scholar] [CrossRef]
- Sillion, F.; Puech, C. A general two-pass method integrating specular and diffuse reflection. ACM SIGGRAPH Comput. Graph. 1989, 23, 335–344. [Google Scholar] [CrossRef]
- John Lemon’s Haunted Jaunt: 3D Beginner—Unity Learn. Available online: https://learn.unity.com/project/john-lemon-s-haunted-jaunt-3d-beginner (accessed on 28 November 2023).
- Orti, R.; Riviere, S.; Durand, F.; Puech, C. Radiosity for dynamic scenes in flatland with the visibility complex. Comput. Graph. Forum 1996, 15, 237–248. [Google Scholar] [CrossRef]
Values: , , . Analytical Form-Factor = 0.2 | ||||
Total Rays | Hit Disc Rays | Form-Factor | Abs. Error | Expected Error |
10,000 | 2017 | 0.2017 | 0.0017 | 0.004 |
10,000 | 2024 | 0.2024 | 0.0024 | 0.004 |
10,000 | 2008 | 0.2008 | 0.0008 | 0.004 |
100,000 | 19,771 | 0.19771 | 0.00229 | 0.00126 |
100,000 | 19,825 | 0.19825 | 0.00175 | 0.00126 |
100,000 | 19,835 | 0.19835 | 0.00165 | 0.00126 |
Values: , , . Analytical form-factor = 0.1 | ||||
Total rays | Hit disc rays | Form-factor | Abs. Error | Expected error |
10,000 | 975 | 0.0975 | 0.0025 | 0.003 |
10,000 | 982 | 0.0982 | 0.0018 | 0.003 |
10,000 | 1020 | 0.1020 | 0.0020 | 0.003 |
100,000 | 9736 | 0.09736 | 0.00264 | 0.000948 |
100,000 | 9851 | 0.09851 | 0.00149 | 0.000948 |
100,000 | 9925 | 0.09925 | 0.00075 | 0.000948 |
Total Rays | K-L | TV | |
---|---|---|---|
10,000 | 0.3466502 | 0.331814 | 0.4405105 |
10,000 | 0.3530622 | 0.3346139 | 0.4405105 |
10,000 | 0.2731511 | 0.3346139 | 0.3538287 |
10,000 | 0.2862652 | 0.304014 | 0.369765 |
10,000 | 0.3157122 | 0.3179139 | 0.4044647 |
100,000 | 0.3179567 | 0.3190739 | 0.4072793 |
100,000 | 0.3164447 | 0.318334 | 0.4054418 |
100,000 | 0.3170037 | 0.318584 | 0.4060861 |
100,000 | 0.321581 | 0.320724 | 0.4115101 |
100,000 | 0.3169065 | 0.318514 | 0.4059337 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.Y.; Sbert, M.; Chover, M. Viewpoint Selection for 3D-Games with f-Divergences. Entropy 2024, 26, 464. https://doi.org/10.3390/e26060464
Martin MY, Sbert M, Chover M. Viewpoint Selection for 3D-Games with f-Divergences. Entropy. 2024; 26(6):464. https://doi.org/10.3390/e26060464
Chicago/Turabian StyleMartin, Micaela Y., Mateu Sbert, and Miguel Chover. 2024. "Viewpoint Selection for 3D-Games with f-Divergences" Entropy 26, no. 6: 464. https://doi.org/10.3390/e26060464
APA StyleMartin, M. Y., Sbert, M., & Chover, M. (2024). Viewpoint Selection for 3D-Games with f-Divergences. Entropy, 26(6), 464. https://doi.org/10.3390/e26060464