Multimodel Approaches Are Not the Best Way to Understand Multifactorial Systems
Abstract
:Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | confidence interval |
MMA | multi-model averaging |
NHST | null-hypothesis significance testing |
References
- Gruner, D.S.; Smith, J.E.; Seabloom, E.W.; Sandin, S.A.; Ngai, J.T.; Hillebrand, H.; Harpole, W.S.; Elser, J.J.; Cleland, E.E.; Bracken, M.E.; et al. A Cross-System Synthesis of Consumer and Nutrient Resource Control on Producer Biomass. Ecol. Lett. 2008, 11, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Brando, P.M.; Nepstad, D.C.; Balch, J.K.; Bolker, B.; Christman, M.C.; Coe, M.; Putz, F.E. Fire-Induced Tree Mortality in a Neotropical Forest: The Roles of Bark Traits, Tree Size, Wood Density and Fire Behavior. Glob. Chang. Biol. 2012, 18, 630–641. [Google Scholar] [CrossRef]
- Ghenu, A.-H.; Bolker, B.M.; Melnick, D.J.; Evans, B.J. Multicopy Gene Family Evolution on Primate Y Chromosomes. BMC Genom. 2016, 17, 157. [Google Scholar] [CrossRef]
- McGill, B. Why Ecology Is Hard (and Fun)—Multicausality. Dynamic Ecology; 2016. Available online: https://dynamicecology.wordpress.com/2016/03/02/why-ecology-is-hard-and-fun-multicausality/ (accessed on 30 May 2024).
- Platt, J.R. Strong Inference. Science 1964, 146, 347–353. [Google Scholar] [PubMed]
- Fox, J. Why Don’t More Ecologists Use Strong Inference? Dynamic Ecology. (Blog Post). 2016. Available online: https://dynamicecology.wordpress.com/2016/06/01/obstacles-to-strong-inference-in-ecology/ (accessed on 30 May 2024).
- Betini, G.S.; Avgar, T.; Fryxell, J.M. Why Are We Not Evaluating Multiple Competing Hypotheses in Ecology and Evolution? R. Soc. Open Sci. 2017, 4, 16056. [Google Scholar] [CrossRef] [PubMed]
- Taper, M.L.; Ponciano, J.M. Evidential Statistics as a Statistical Modern Synthesis to Support 21st Century Science. Popul. Ecol. 2015, 58, 9–29. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Moritz, M.A.; Batllori, E.; Bolker, B.M. The Role of Fire in Terrestrial Vertebrate Richness Patterns. Ecol. Lett. 2023, 26, 563–574. [Google Scholar] [CrossRef]
- Brewer, M.J.; Butler, A.; Cooksley, S.L. The Relative Performance of AIC, AICC and BIC in the Presence of Unobserved Heterogeneity. Methods Ecol. Evol. 2016, 7, 679–692. [Google Scholar] [CrossRef]
- Mundry, R. Issues in Information Theory-Based Statistical Inference—A Commentary from a Frequentist’s Perspective. Behav. Ecol. Sociobiol. 2011, 65, 57–68. [Google Scholar] [CrossRef]
- Cade, B.S. Model Averaging and Muddled Multimodel Inference. Ecology 2015, 96, 2370–2382. [Google Scholar] [CrossRef]
- Bernhardt, I.; Jung, B.S. The Interpretation of Least Squares Regression with Interaction or Polynomial Terms. Rev. Econ. Stat. 1979, 61, 481–483. [Google Scholar] [CrossRef]
- Jones, L.V.; Tukey, J.W. A Sensible Formulation of the Significance Test. Psychol. Methods 2000, 5, 411–414. [Google Scholar] [CrossRef]
- Dushoff, J.; Kain, M.P.; Bolker, B.M. I Can See Clearly Now: Reinterpreting Statistical Significance. Methods Ecol. Evol. 2019, 10, 756–759. [Google Scholar] [CrossRef]
- Meng, X. Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and the 2016 US Presidential Election. Ann. Appl. Stat. 2018, 12, 685–726. [Google Scholar] [CrossRef]
- Harrell, F. Regression Modeling Strategies; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Romano, J.P.; Wolf, M. Stepwise Multiple Testing as Formalized Data Snooping. Econometrica 2005, 73, 1237–1282. [Google Scholar] [CrossRef]
- Whittingham, M.J.; Stephens, P.A.; Bradbury, R.B.; Freckleton, R.P. Why Do We Still Use Stepwise Modelling in Ecology and Behaviour? J. Anim. Ecol. 2006, 75, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Mundry, R.; Nunn, C.L. Stepwise Model Fitting and Statistical Inference: Turning Noise into Signal Pollution. Am. Nat. 2009, 173, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Freckleton, R.P. Dealing with Collinearity in Behavioural and Ecological Data: Model Averaging and the Problems of Measurement Error. Behav. Ecol. Sociobiol. 2011, 65, 91–101. [Google Scholar] [CrossRef]
- Galipaud, M.; Gillingham, M.A.F.; David, M.; Dechaume-Moncharmo, F.X. Ecologists Overestimate the Importance of Predictor Variables in Model Averaging: A Plea for Cautious Interpretations. Methods Ecol. Evol. 2014, 5, 983–991. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, G.; Carroll, R.J. Model Averaging Based on Kullback-Leibler Distance. Stat. Sin. 2015, 25, 1583–1598. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.H. Confronting Multicollinearity in Ecological Multiple Regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- Morrissey, M.B.; Ruxton, G.D. Multiple Regression Is Not Multiple Regressions: The Meaning of Multiple Regression and the Non-Problem of Collinearity. Philos. Theory Pract. Biol. 2018, 10, 3. [Google Scholar] [CrossRef]
- Feng, X.; Park, S.D.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in Ecological Niche Modeling: Confusions and Challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, J. Collinearity Isn’t a Disease That Needs Curing. Meta-Psychology 2021, 5, 1–11. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 1998. [Google Scholar]
- Johnson, J.B.; Omland, K.S. Model Selection in Ecology and Evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, T.C. The Method of Multiple Working Hypotheses. Science 1890, 15, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.; Shalizi, C.R. Philosophy and the Practice of Bayesian Statistics. Br. J. Math. Stat. Psychol. 2013, 66, 8–38. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F.M. Bayesian Theory, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994. [Google Scholar] [CrossRef]
- Barker, R.J.; Link, W.A. Truth, Models, Model Sets, AIC, and Multimodel Inference: A Bayesian Perspective. J. Wildl. Manag. 2015, 79, 730–738. [Google Scholar] [CrossRef]
- Ponciano, J.; Mark, L. Taper. Multi-Model Inference Through Projections in Model Space. arXiv 2018, arXiv:1805.08765. [Google Scholar]
- Luttbeg, B.; Langen, T.A. Comparing alternative models to empirical data: Cognitive models of western scrub-jay foraging behavior. Am. Nat. 2004, 163, 263–276. [Google Scholar] [CrossRef]
- Dahlgren, J.P. Alternative Regression Methods Are Not Considered in Murtaugh (2009) or by Ecologists in General. Ecol. Lett. 2010, 13, E7–E9. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, N.P. Moving Beyond Noninformative Priors: Why and How to Choose Weakly Informative Priors in Bayesian Analyses. Oikos 2019, 128, 912–928. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R; CRC Texts in Statistical Science; Chapman & Hall: London, UK, 2017. [Google Scholar]
- Chandrashekar, G.; Sahin, F. A Survey on Feature Selection Methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression: 40 Years on. Annu. Rev. Econ. 2017, 9, 155–176. [Google Scholar] [CrossRef]
- Wenger, S.J.; Olden, J.D. Assessing Transferability of Ecological Models: An Underappreciated Aspect of Statistical Validation. Methods Ecol. Evol. 2012, 3, 260–267. [Google Scholar] [CrossRef]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-Validation Strategies for Data with Temporal, Spatial, Hierarchical, or Phylogenetic Structure. Ecography 2016, 40, 913–929. [Google Scholar] [CrossRef]
- Chung, Y.; Rabe-Hesketh, S.; Dorie, V.; Gelman, A.; Liu, J. A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models. Psychometrika 2013, 78, 685–709. [Google Scholar] [CrossRef] [PubMed]
- Pötscher, B.M.; Schneider, U. Confidence Sets Based on Penalized Maximum Likelihood Estimators in Gaussian Regression. Electron. J. Stat. 2010, 4, 334–360. [Google Scholar] [CrossRef]
- Javanmard, A.; Montanari, A. Confidence Intervals and Hypothesis Testing for High-Dimensional Regression. J. Mach. Learn. Res. 2014, 15, 2869–2909. Available online: http://dl.acm.org/citation.cfm?id=2697057 (accessed on 30 May 2024).
- Lockhart, R.; Taylor, J.; Tibshirani, R.J.; Tibshirani, R. A Significance Test for the Lasso. Ann. Stat. 2014, 42, 413. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285373/ (accessed on 30 May 2024). [CrossRef] [PubMed]
- Taylor, J.; Tibshirani, R. Post-Selection Inference for L1-penalized Likelihood Models. Can. J. Stat. 2018, 46, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Obenchain, R. Classical F-Tests and Confidence Regions for Ridge Regression. Technometrics 1977, 19, 429–439. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, S.Z.F. Interval Estimation by Frequentist Model Averaging. Commun. Stat.-Theory Methods 2013, 42, 4342–4356. [Google Scholar] [CrossRef]
- Hjort, N.L.; Claeskens, G. Frequentist Model Average Estimators. J. Am. Stat. Assoc. 2003, 98, 879–899. [Google Scholar] [CrossRef]
- Turek, D.; Fletcher, D. Model-Averaged Wald Confidence Intervals. Comput. Stat. Data Anal. 2012, 56, 2809–2815. [Google Scholar] [CrossRef]
- Fletcher, D.; Turek, D. Model-Averaged Profile Likelihood Intervals. J. Agric. Biol. Environ. Stat. 2012, 17, 38–51. [Google Scholar] [CrossRef]
- Turek, D.B. Frequentist Model-Averaged Confidence Intervals. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2013. Available online: https://www.otago.ourarchive.ac.nz/bitstream/handle/10523/3923/TurekDanielB2013PhD.pdf (accessed on 30 May 2024).
- Turek, D. Comparison of the Frequentist MATA Confidence Interval with Bayesian Model-Averaged Confidence Intervals. J. Probab. Stat. 2015, 2015, 420483. [Google Scholar] [CrossRef]
- Kabaila, P.; Welsh, A.H.; Abeysekera, W. Model-Averaged Confidence Intervals. Scand. J. Stat. 2016, 43, 35–48. [Google Scholar] [CrossRef]
- Dormann, C.F.; Calabrese, J.M.; Guillera-Arroita, G.; Matechou, E.; Bahn, V.; Bartoń, K.; Beale, C.M.; Ciuti, S.; Elith, J.; Gerstner, K.; et al. Model Averaging in Ecology: A Review of Bayesian, Information-Theoretic and Tactical Approaches for Predictive Inference. Ecol. Monogr. 2018, 88, 485–504. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Murtaugh, P.A. Performance of Several Variable-Selection Methods Applied to Real Ecological Data. Ecol. Lett. 2009, 12, 1061–1068. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolker, B.M. Multimodel Approaches Are Not the Best Way to Understand Multifactorial Systems. Entropy 2024, 26, 506. https://doi.org/10.3390/e26060506
Bolker BM. Multimodel Approaches Are Not the Best Way to Understand Multifactorial Systems. Entropy. 2024; 26(6):506. https://doi.org/10.3390/e26060506
Chicago/Turabian StyleBolker, Benjamin M. 2024. "Multimodel Approaches Are Not the Best Way to Understand Multifactorial Systems" Entropy 26, no. 6: 506. https://doi.org/10.3390/e26060506
APA StyleBolker, B. M. (2024). Multimodel Approaches Are Not the Best Way to Understand Multifactorial Systems. Entropy, 26(6), 506. https://doi.org/10.3390/e26060506