Time-Dependent Effective Hamiltonians for Light–Matter Interactions
Abstract
:1. Introduction
2. The Field Dresses the Molecules
3. Application to the Two-Photon Spontaneous Emission
4. The Molecules Dress the Field
5. Application to the Resonance Energy Transfer
6. The Dressed Molecules Dress the Field—And the Reverse
6.1. The Dressed Molecules Dress the Field: Retarded Long-Distance Regime
6.2. The Dressed Field Dresses the Molecules: Non-Retarded Regime
7. Application to the London Interaction Energy
8. Final Remarks and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Susceptibilities
Appendix A.1. Molecular Polarizability
Appendix A.2. The Field of a Dipole Is the Field Susceptibility
Appendix B. London Interaction in the Imaginary Frequency Domain
References
- Dirac, P.A.M. The Quantum Theory of the Emission and Absorption of Radiation. Proc. Royal Soc. Lond. A 1927, 114, 243. [Google Scholar]
- Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Dover Publications: New York, NY, USA, 1984. [Google Scholar]
- Compagno, G.; Passante, R.; Persico, F. Atom-Field Interactions and Dressed Atoms; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Buhmann, S.Y. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces; Springer: Cham, Switzerland, 2012. [Google Scholar]
- Buhmann, S.Y. Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction; Springer: Cham, Switzerland, 2012. [Google Scholar]
- Milonni, P.W. An Introduction to Quantum Optics and Quantum Fluctuations; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Passante, R.; Power, E.A.; Thirunamachandran, T. Radiation-molecule coupling using dynamic polarizabilities: Application to many-body forces. Phys. Lett. A 1998, 249, 77. [Google Scholar] [CrossRef]
- Passante, R.; Rizzuto, L. Effective Hamiltonians in nonrelativistic quantum electrodynamics. Symmetry 2021, 13, 2375. [Google Scholar] [CrossRef]
- Alonso, L.; Matos, G.C.; Impens, F.; Neto, P.A.M.; de Melo e Souza, R. Multipole Approach to the Dynamical Casimir Effect with Finite-Size Scatterers. Entropy 2024, 26, 251. [Google Scholar] [CrossRef]
- de Melo e Souza, R.; Impens, F.; Neto, P.A.M. Microscopic dynamical Casimir effect. Phys. Rev. A 2018, 97, 032514. [Google Scholar] [CrossRef]
- Lo, L.; Law, C.K. Quantum radiation from a shaken two-level atom in vacuum. Phys. Rev. A 2018, 98, 063807. [Google Scholar] [CrossRef]
- Belén Farías, M.; Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Motion induced radiation and quantum friction for a moving atom. Phys. Rev. D 2019, 100, 036013. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Motion-induced radiation due to an atom in the presence of a graphene plane. Universe 2021, 7, 158. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Kort-Kamp, W.J.M. Shaping dynamical Casimir photons. Universe 2021, 7, 189. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Photons and Atoms: Introduction to Quantum Electrodynamics; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Cresser, J.D. Electric field commutation relation in the presence of a dipole atom. Phys. Rev. A 1984, 29, 1984. [Google Scholar] [CrossRef]
- Cresser, J.D. Unequal Time EM Field Commutators in Quantum Optics. Phys. Scr. 1988, T21, 52. [Google Scholar] [CrossRef]
- Milonni, P.W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Brune, M.; Raimond, J.M.; Goy, P.; Davidovich, L.; Haroche, S. Realization of a two-photon maser oscillator. Phys. Rev. Lett. 1987, 59, 1899. [Google Scholar] [CrossRef]
- Davidovich, L.; Raimond, J.M.; Brune, M.; Haroche, S. Quantum theory of a two-photon micromaser. Phys. Rev. A 1987, 36, 3771. [Google Scholar] [CrossRef]
- Neto, P.A.M.; Davidovich, L.; Raimond, J.-M. Theory of the nondegenerate two-photon micromaser. Phys. Rev. A 1991, 43, 5073. [Google Scholar] [CrossRef]
- Hayat, A.; Ginzburg, P.; Orenstein, M. Observation of two-photon emission from semiconductors. Nat. Photonics 2008, 2, 238. [Google Scholar] [CrossRef]
- Wang, H.; Hu, H.; Chung, T.H.; Qin, J.; Yang, X.; Li, J.P.; Liu, R.Z.; Zhong, H.S.; He, Y.M.; Ding, X.; et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 2019, 122, 113602. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, J.; Parry, M.; Cai, M.; Camacho-Morales, R.; Xu, L.; Neshev, D.N.; Sukhorukov, A.A. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Sci. Adv. 2022, 8, eabq4240. [Google Scholar] [CrossRef]
- Poddubny, A.N.; Ginzburg, P.; Belov, P.A.; Zayats, A.V.; Kivshar, Y.S. Tailoring and enhancing spontaneous two-photon emission using resonant plasmonic nanostructures. Phys. Rev. A 2012, 86, 033826. [Google Scholar] [CrossRef]
- Muniz, Y.; Manjavacas, A.; Farina, C.; Dalvit, D.A.R.; Kort-Kamp, W.J.M. Two-photon spontaneous emission in atomically thin plasmonic nanostructures. Phys. Rev. Lett. 2020, 125, 033601. [Google Scholar] [CrossRef]
- Hu, F.; Li, L.; Liu, Y.; Meng, Y.; Gonga, M.; Yang, Y. Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material. Commun. Phys. 2021, 4, 84. [Google Scholar] [CrossRef]
- Muniz, Y.; Abrantes, P.P.; Martín-Moreno, L.; Pinheiro, F.A.; Farina, C.; Kort-Kamp, W.J.M. Entangled two-plasmon generation in carbon nanotubes and graphene-coated wires. Phys. Rev. B 2022, 105, 165412. [Google Scholar] [CrossRef]
- Smeets, S.; Maes, B.; Rosolen, G. General framework for two-photon spontaneous emission near plasmonic nanostructures. Phys. Rev. A 2023, 107, 063516. [Google Scholar] [CrossRef]
- Feinberg, G.; Sucher, J. General Theory of the van der Waals Interaction: A model-independent approach. Phys. Rev. A 1970, 2, 2395. [Google Scholar] [CrossRef]
- Farina, C.; Santos, F.C.; Tort, A.C. On the force between an electrically polarizable atom and a magnetically polarizable one. J. Phys. A 2002, 35, 2477. [Google Scholar] [CrossRef]
- Förster, T. Energiewanderung und fluoreszenz. Naturwissenschaften 1946, 33, 166. [Google Scholar] [CrossRef]
- Martínez, P.L.H.; Govorov, A.; Demir, H.V. Understanding and Modeling Förster-Type Resonance Energy Transfer (FRET); Springer: Singapore, 2017; Volume 1. [Google Scholar]
- Milonni, P.W.; Rafsanjani, S.M.H. Distance dependence of two-atom dipole interactions with one atom in an excited state. Phys. Rev. A 2015, 92, 062711. [Google Scholar] [CrossRef]
- Biehs, S.-A.; Menon, V.M.; Agarwal, G.S. Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial. Phys. Rev. B 2016, 93, 245439. [Google Scholar] [CrossRef]
- Weeraddana, D.; Premaratne, M.; Gunapala, S.D.; Andrews, D.L. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror. J. Chem. Phys. 2017, 147, 074117. [Google Scholar] [CrossRef]
- Li, Y.; Nemilentsau, A.; Argyropoulos, C. Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems. Nanoscale 2019, 11, 14635. [Google Scholar] [CrossRef]
- Abrantes, P.P.; Szilard, D.; Rosa, F.S.S.; Farina, C. Resonance energy transfer at percolation transition. Mod. Phys. Lett. A 2020, 35, 2040022. [Google Scholar] [CrossRef]
- Abrantes, P.P.; Bastos, G.; Szilard, D.; Farina, C.; Rosa, F.S.S. Tuning resonance energy transfer with magneto-optical properties of graphene. Phys. Rev. B 2021, 103, 174421. [Google Scholar] [CrossRef]
- Pini, F.; Francés-Soriano, L.; Andrigo, V.; Natile, M.M.; Hildebrandt, N. Optimizing upconversion nanoparticles for FRET biosensing. ACS Nano 2023, 17, 4971. [Google Scholar] [CrossRef]
- Nayem, S.H.; Sikder, B.; Uddin, S.Z. Anisotropic energy transfer near multi-layer black phosphorus. 2D Mater. 2023, 10, 045022. [Google Scholar] [CrossRef]
- Song, Q.; Yan, X.; Cui, H.; Ma, M. Efficient cascade resonance energy transfer in dynamic nanoassembly for intensive and long-lasting multicolor chemiluminescence. ACS Nano 2020, 14, 3696. [Google Scholar] [CrossRef]
- Rusanen, J.; Kareinen, L.; Levanov, L.; Mero, S.; Pakkanen, S.H.; Kantele, A.; Amanat, F.; Krammer, F.; Hedman, K.; Vapalahti, O.; et al. A 10-Minute “Mix and Read” Antibody Assay for SARS-CoV-2. Viruses 2021, 13, 143. [Google Scholar] [CrossRef]
- Bednarz, A.; Sønderskov, S.M.; Dong, M.; Birkedal, V. Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures. Nanoscale 2023, 15, 1317. [Google Scholar] [CrossRef]
- Andrews, D.L.; Sherborne, B.S. Resonant excitation transfer: A quantum electrodynamical study. J. Chem. Phys. 1987, 86, 4011. [Google Scholar] [CrossRef]
- Franz, J.C.; Buhmann, S.Y.; Salam, A. Macroscopic quantum electrodynamics theory of resonance energy transfer involving chiral molecules. Phys. Rev. A 2023, 107, 032809. [Google Scholar] [CrossRef]
- Craig, D.P.; Power, E.A. The asymptotic Casimir–Polder potential from second-order perturbation theory and its generalization for anisotropic polarizabilities. Int. J. Quantum Chem. 1969, 3, 903. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics; Wiley-VCH: Weinheim, Germany, 2019; Volume II. [Google Scholar]
- London, F. Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 1930, 63, 245. [Google Scholar] [CrossRef]
- Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev. 1948, 73, 360. [Google Scholar] [CrossRef]
- Power, E.A.; Thirunamachandran, T. Dispersion forces between molecules with one or both molecules excited. Phys. Rev. A 1995, 51, 3660. [Google Scholar] [CrossRef]
- Power, E.A.; Thirunamachandran, T. Two- and three-body dispersion forces with one excited molecule. Chem. Phys. 1995, 198, 5. [Google Scholar] [CrossRef]
- Rizzuto, L.; Passante, R.; Persico, F. Dynamical Casimir-Polder energy between an excited- and a ground-state atom. Phys. Rev. A 2004, 70, 012107. [Google Scholar] [CrossRef]
- Barcellona, P.; Passante, R.; Rizzuto, L.; Buhmann, S.Y. van der Waals interactions between excited atoms in generic environments. Phys. Rev. A 2016, 94, 012705. [Google Scholar] [CrossRef]
- Kien, F.L.; Kornovan, D.F.; Chormaic, S.N.; Busch, T. Repulsive Casimir-Polder potentials of low-lying excited states of a multilevel alkali-metal atom near an optical nanofiber. Phys. Rev. A 2022, 105, 042817. [Google Scholar] [CrossRef]
- Lu, B.-S.; Arifa, K.Z.; Ducloy, M. An excited atom interacting with a Chern insulator: Toward a far-field resonant Casimir–Polder repulsion. Eur. Phys. J. D 2022, 76, 210. [Google Scholar] [CrossRef]
- Jenkins, J.K.; Salam, A.; Thirunamachandran, T. Retarded dispersion interaction energies between chiral molecules. Phys. Rev. A 1994, 50, 4767. [Google Scholar] [CrossRef]
- Salam, A. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules. J. Chem. Phys. 2006, 124, 014302. [Google Scholar] [CrossRef]
- Butcher, D.T.; Buhmann, S.Y.; Scheel, S. Casimir-Polder forces between chiral objects. New J. Phys. 2012, 14, 11301. [Google Scholar] [CrossRef]
- Barcellona, P.; Safari, H.; Salam, A.; Buhmann, S.Y. Enhanced chiral discriminatory van der Waals interactions mediated by chiral surfaces. Phys. Rev. Lett. 2017, 118, 193401. [Google Scholar] [CrossRef]
- Wylie, J.M.; Sipe, J.E. Quantum electrodynamics near an interface. II. Phys. Rev. A 1985, 32, 2030. [Google Scholar] [CrossRef]
- Buhmann, S.Y.; Welsch, D.-G.; Kampf, T. Ground-state van der Waals forces in planar multilayer magnetodielectrics. Phys. Rev. A 2005, 72, 032112. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Probing quantum-vacuum geometrical effects with cold atoms. Phys. Rev. Lett. 2008, 100, 040405. [Google Scholar] [CrossRef]
- Messina, R.; Dalvit, D.A.R.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Dispersive interactions between atoms and nonplanar surfaces. Phys. Rev. A 2009, 80, 022119. [Google Scholar] [CrossRef]
- Contreras-Reyes, A.M.; Guérout, R.; Neto, P.A.M.; Dalvit, D.A.R.; Lambrecht, A.; Reynaud, S. Casimir-Polder interaction between an atom and a dielectric grating. Phys. Rev. A 2010, 82, 052517. [Google Scholar] [CrossRef]
- Cysne, T.; Kort-Kamp, W.J.M.; Oliver, D.; Pinheiro, F.A.; Rosa, F.S.S.; Farina, C. Tuning the Casimir-Polder interaction via magneto-optical effects in graphene. Phys. Rev. A 2014, 90, 052511. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M. Casimir-Polder interaction for gently curved surfaces. Phys. Rev. D 2014, 90, 081702(R). [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M. Casimir-Polder force between anisotropic nanoparticles and gently curved surfaces. Phys. Rev. D 2015, 92, 025028. [Google Scholar] [CrossRef]
- Garcion, C.; Fabre, N.; Bricha, H.; Perales, F.; Scheel, S.; Ducloy, M.; Dutier, G. Intermediate-range Casimir-Polder interaction probed by high-order slow atom diffraction. Phys. Rev. Lett. 2021, 127, 170402. [Google Scholar] [CrossRef]
- Abrantes, P.P.; Pessanha, V.; de Melo e Souza, R.; Farina, C. Controlling the atom-sphere interaction with an external electric field. Phys. Rev. A 2021, 104, 022820. [Google Scholar] [CrossRef]
- Marachevsky, V.N.; Sidelnikov, A.A. Casimir-Polder interaction with Chern-Simons boundary layers. Phys. Rev. D 2023, 107, 105019. [Google Scholar] [CrossRef]
- Alves, D.T.; Queiroz, L.; Nogueira, E.C.M.; Peres, N.M.R. Curvature-induced repulsive effect on the lateral Casimir-Polder–van der Waals force. Phys. Rev. A 2023, 107, 062821. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Casimir physics beyond the proximity force approximation: The derivative expansion. Physics 2024, 6, 290. [Google Scholar] [CrossRef]
- Messina, R.; Vasile, R.; Passante, R. Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall. Phys. Rev. A 2010, 82, 062501. [Google Scholar] [CrossRef]
- Behunin, R.O.; Hu, B.-L. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field. Phys. Rev. A 2011, 84, 012902. [Google Scholar] [CrossRef]
- Barcellona, P.; Passante, R.; Rizzuto, L.; Buhmann, S.Y. Dynamical Casimir–Polder interaction between a chiral molecule and a surface. Phys. Rev. A 2016, 93, 032508. [Google Scholar] [CrossRef]
- Goedecke, G.H.; Wood, R.C. Casimir–Polder interaction at finite temperature. Phys. Rev. A 1999, 11, 2577. [Google Scholar] [CrossRef]
- Barton, G. Long-range Casimir–Polder-Feinberg-Sucher intermolecular potential at nonzero temperature. Phys. Rev. A 2001, 64, 032102. [Google Scholar] [CrossRef]
- Obrecht, J.M.; Wild, R.J.; Antezza, M.; Pitaevskii, L.P.; Stringari, S.; Cornell, E.A. Measurement of the Temperature Dependence of the Casimir-Polder Force. Phys. Rev. Lett. 2007, 98, 063201. [Google Scholar] [CrossRef]
- Haakh, H.; Intravaia, F.; Henkel, C.; Spagnolo, S.; Passante, R.; Power, B.; Sols, F. Temperature dependence of the magnetic Casimir-Polder interaction. Phys. Rev. A 2009, 80, 062905. [Google Scholar] [CrossRef]
- Chaichian, M.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Tureanu, A. Thermal Casimir-Polder interaction of different atoms with graphene. Phys. Rev. A 2012, 86, 012515. [Google Scholar] [CrossRef]
- Laliotis, A.; de Silans, T.P.; Maurin, I.; Ducloy, M.; Bloch1, D. Casimir–Polder interactions in the presence of thermally excited surface modes. Nat. Commun. 2014, 5, 4364. [Google Scholar] [CrossRef]
- Khusnutdinov, N.; Kashapov, R.; Woods, L.M. Thermal Casimir and Casimir–Polder interactions in N parallel 2D Dirac materials. 2D Mater. 2018, 5, 035032. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Waltham, MA, USA, 2011. [Google Scholar]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Duan, X.; Fei, Z.; Gutierrez, H.R.; Huang, Y.; Huang, X.; Quereda, J.; Qian, Q.; Sutter, E.; Sutter, P. Van der Waals heterostructures. Nat. Rev. Methods Primers 2022, 2, 58. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Mewes, J.-M.; Ehlert, S.; Grimme, S. Extension and evaluation of the D4 London-dispersion model for periodic systems. Phys. Chem. Chem. Phys. 2020, 22, 8499. [Google Scholar] [CrossRef]
- Chowdhury, S.T.u.R.; Tang, H.; Perdew, J.P. van der Waals corrected density functionals for cylindrical surfaces: Ammonia and nitrogen dioxide adsorbed on a single-walled carbon nanotube. Phys. Rev. B 2021, 103, 195410. [Google Scholar] [CrossRef]
- Dryden, D.M.; Hopkins, J.C.; Denoyer, L.K.; Poudel, L.; Steinmetz, N.F.; Ching, W.-Y.; Podgornik, R.; Parsegian, A.; French, R.H. van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects. Langmuir 2015, 31, 10145. [Google Scholar] [CrossRef]
- Spreng, B.; Neto, P.A.M.; Ingold, G.-L. Plane-wave approach to the exact van der Waals interaction between colloid particles. J. Chem. Phys. 2020, 153, 024115. [Google Scholar] [CrossRef]
- Nunes, R.O.; Spreng, B.; de Melo e Souza, R.; Ingold, G.-L.; Neto, P.A.M.; Rosa, F.S.S. The Casimir Interaction between Spheres Immersed in Electrolytes. Universe 2021, 7, 156. [Google Scholar] [CrossRef]
- Scheel, S.; Buhmann, S.Y. Casimir-Polder forces on moving atoms. Phys. Rev. A 2009, 80, 042902. [Google Scholar] [CrossRef]
- Barton, G. On van der Waals friction: I. Between two atoms. New J. Phys. 2010, 12, 113044. [Google Scholar] [CrossRef]
- Pieplow, G.; Henkel, C. Fully covariant radiation force on a polarizable particle. New J. Phys. 2013, 15, 023027. [Google Scholar] [CrossRef]
- Intravaia, F.; Behunin, R.O.; Dalvit, D.A.R. Quantum friction and fluctuation theorems. Phys. Rev. A 2014, 89, 050101(R). [Google Scholar] [CrossRef]
- Intravaia, F.; Behunin, R.O.; Henkel, C.; Busch, K.; Dalvit, D.A.R. Failure of Local Thermal Equilibrium in Quantum Friction. Phys. Rev. Lett. 2016, 117, 100402. [Google Scholar] [CrossRef]
- Donaire, M.; Lambrecht, A. Velocity-dependent dipole forces on an excited atom. Phys. Rev. A 2016, 93, 022701. [Google Scholar] [CrossRef]
- Reiche, D.; Intravaia, F.; Hsiang, J.-T.; Busch, K.; Hu, B.L. Nonequilibrium thermodynamics of quantum friction. Phys. Rev. A 2020, 102, 050203(R). [Google Scholar] [CrossRef]
- Reiche, D.; Busch, K.; Intravaia, F. Nonadditive Enhancement of Nonequilibrium Atom-Surface Interactions. Phys. Rev. Lett. 2020, 124, 193603. [Google Scholar] [CrossRef]
- Farías, M.B.; Lombardo, F.C.; Soba, A.; Villar, P.I.; Decca, R.S. Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase. NPJ Quantum Inf. 2020, 6, 25. [Google Scholar] [CrossRef]
- Lombardo, F.C.; Decca, R.S.; Viotti, L.; Villar, P.I. Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum. Adv. Quantum Technol. 2021, 4, 2000155. [Google Scholar] [CrossRef]
- Dedkov, G.V.; Kyasov, A.A. Nonlocal friction forces in the particle-plate and plate-plate configurations: Nonretarded approximation. Surf. Sci. 2020, 700, 121681. [Google Scholar] [CrossRef]
- Dedkov, G.V. Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry. Universe 2021, 7, 106. [Google Scholar] [CrossRef]
- Impens, F.; Behunin, R.O.; Ttira, C.C.; Neto, P.A.M. Non-local double-path Casimir phase in atom interferometers. EPL 2013, 101, 60006. [Google Scholar] [CrossRef]
- Impens, F.; Ttira, C.C.; Neto, P.A.M. Non-additive dynamical Casimir atomic phases. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 245503. [Google Scholar] [CrossRef]
- Impens, F.; de Melo e Souza, R.; Matos, G.C.; Neto, P.A.M. Dynamical Casimir effects with atoms: From the emission of photon pairs to geometric phases. EPL 2022, 138, 30001. [Google Scholar] [CrossRef]
- Salam, A. van der Waals Dispersion Potential between Excited Chiral Molecules via the Coupling of Induced Dipoles. Physics 2023, 5, 247. [Google Scholar] [CrossRef]
- Dung, H.T. Interatomic dispersion potential in a cylindrical system: Atoms being off axis. J. Phys. B 2016, 49, 165502. [Google Scholar] [CrossRef]
- Zuki, F.M.; Edyvean, R.G.J.; Pourzolfaghar, H.; Kasim, N. Modeling of the Van Der Waals Forces during the Adhesion of Capsule-Shaped Bacteria to Flat Surfaces. Biomimetics 2021, 6, 5. [Google Scholar] [CrossRef]
- Laliotis, A.; Lu, B.-S.; Ducloy, M.; Wilkowski, D. Atom-surface physics: A review. AVS Quantum Sci. 2021, 3, 043501. [Google Scholar] [CrossRef]
- Nogueira, E.C.M.; Queiroz, L.; Alves, D.T. Peak, valley, and intermediate regimes in the lateral van der Waals force. Phys. Rev. A 2021, 104, 012816. [Google Scholar] [CrossRef]
- Nogueira, E.C.M.; Queiroz, L.; Alves, D.T. Sign inversion in the lateral van der Waals force. Phys. Rev. A 2022, 105, 062816. [Google Scholar] [CrossRef]
- Milonni, P.W.; Ackerhalt, J.R.; Smith, W.A. Interpretation of Radiative Corrections in Spontaneous Emission. Phys. Rev. Lett. 1973, 31, 958. [Google Scholar] [CrossRef]
- Dalibard, J.; Dupont-Roc, J.; Cohen-Tannoudji, C. Vacuum fluctuations and radiation reaction: Identification of their respective contributions. J. Phys. 1982, 43, 1617. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C. Fluctuations in Radiative Processes. Phys. Scr. 1986, 12, 19. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, S.; Yu, H. Interatomic interaction of two ground-state atoms in vacuum: Contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A 2021, 103, 012227. [Google Scholar] [CrossRef]
- Impens, F.; Ttira, C.C.; Behunin, R.O.; Neto, P.A.M. Dynamical local and nonlocal Casimir atomic phases. Phys. Rev. A 2014, 89, 022516. [Google Scholar] [CrossRef]
- Matos, C.G.; de Melo e Souza, R.; Neto, P.A.M.; Impens, F. Quantum Vacuum Sagnac Effect. Phys. Rev. Lett. 2021, 127, 270401. [Google Scholar]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Calzetta, E.A.; Hu, B.-L.B. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Weiss, U. Quantum Dissipative Systems; World Scientific: Singapore, 2007. [Google Scholar]
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255. [Google Scholar] [CrossRef]
- Dubovik, V.M.; Tugushev, V.V. Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 1990, 187, 142. [Google Scholar] [CrossRef]
- Pitombo, R.S.; Vasconcellos, M.; Farina, C.; de Melo e Souza, R. Source method for the evaluation of multipole fields. Eur. J. Phys. 2021, 42, 025202. [Google Scholar] [CrossRef]
- Nussenzveig, H.M. Causality and Dispersion Relations; Academic Press: New York, NY, USA, 1972. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.S.; Pereira, P.H.; Abrantes, P.P.; Farina, C.; Maia Neto, P.A.; de Melo e Souza, R. Time-Dependent Effective Hamiltonians for Light–Matter Interactions. Entropy 2024, 26, 527. https://doi.org/10.3390/e26060527
Santos AS, Pereira PH, Abrantes PP, Farina C, Maia Neto PA, de Melo e Souza R. Time-Dependent Effective Hamiltonians for Light–Matter Interactions. Entropy. 2024; 26(6):527. https://doi.org/10.3390/e26060527
Chicago/Turabian StyleSantos, Aroaldo S., Pedro H. Pereira, Patrícia P. Abrantes, Carlos Farina, Paulo A. Maia Neto, and Reinaldo de Melo e Souza. 2024. "Time-Dependent Effective Hamiltonians for Light–Matter Interactions" Entropy 26, no. 6: 527. https://doi.org/10.3390/e26060527
APA StyleSantos, A. S., Pereira, P. H., Abrantes, P. P., Farina, C., Maia Neto, P. A., & de Melo e Souza, R. (2024). Time-Dependent Effective Hamiltonians for Light–Matter Interactions. Entropy, 26(6), 527. https://doi.org/10.3390/e26060527