Dose Finding in Oncology Trials Guided by Ordinal Toxicity Grades Using Continuous Dose Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Likelihood and Model Reparameterization
2.3. Prior Specification
2.4. Trial Design
3. Design Properties
- (i)
- Overdose Control: Each time patients are ready to be enrolled to the trial, we seek a dose to allocate to these patients while controlling the posterior probability of exposing them to toxic dose levels.
- (ii)
- Toxicity-Dependent Dose Escalation: If the maximum grade of toxicity experienced by patient k is grade 2, then the dose allocated to patient is lower than the dose that would have been given to patient had the maximum grade of toxicity experienced by patient k been grade 0 or 1.
- (iii)
- Coherence: If patient k treated at dose level experiences DLT, then the dose allocated to patient satisfies . Similarly, if patient k does not experience DLT and has no grade 2 toxicity, then the dose allocated to patient satisfies .
4. Application to Real-Life Example
4.1. DZ-002 Phase 1 Trial
4.2. Design Operating Characteristics
4.3. Comparing Ordinal Toxicity to Binary Toxicity
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Model Robustness
Scenarios | Safety | Efficiency | ||||
---|---|---|---|---|---|---|
Model | True MTD (mg/kg) | Ave DLT Rate | % Trials with DLT Rate > | Estimated MTD | Average Bias | Percent Selection |
7.76 | 0.33 | 5% | 7.94 | 0.98 | 64% | |
7.76 | 0.33 | 2.0% | 7.79 | 0.82 | 61% | |
7.76 | 0.32 | 3.3% | 8.19 | 1.23 | 67% |
References
- Roberts, T.G.; Goulart, B.H.; Squitieri, L.; Stallings, S.C.; Halpern, E.F.; Chabner, B.A.; Gazelle, G.S.; Finkelstein, S.N.; Clark, J.W. Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials. J. Am. Med. Assoc. 2004, 292, 2130–2140. [Google Scholar] [CrossRef] [PubMed]
- Lipsett, M.B. On the nature and ethics of phase I clinical trials of cancer chemotherapies. J. Am. Med. Assoc. 1982, 248, 941–942. [Google Scholar] [CrossRef]
- Emanuel, E.J. A phase I trial on the ethics of phase I trials. J. Clin. Oncol. 1995, 13, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.; Avis, M. Ethical and practical problems of early anti-cancer drug trials: A review of the literature. Eur. J. Cancer Care 1996, 5, 90–95. [Google Scholar] [CrossRef]
- Estey, E.; Hoth, D.; Simon, R.; Marsoni, S.; Leyland-Jones, B.; Wittes, R. Therapeutic response in phase I trials of antineoplastic agents. Cancer Treat. Rep. 1986, 70, 1105–1115. [Google Scholar] [PubMed]
- Decoster, G.; Stein, G.; Holdener, E.E. Responses and toxic deaths in phase I clinical trials. Ann. Oncol. 1990, 1, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Turner, J. Response rates, duration of response, and dose response effects in phase I studies of antineoplastics. Investig. New Drugs 1991, 9, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, C.; Ratain, M.J.; Grochowski, E.; Stocking, C.; Kodish, E.; Mick, R.; Siegler, M. Perceptions of cancer patients and their physicians involved in phase I trials. J. Clin. Oncol. 1995, 13, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Meropol, N.J.; Weinfurt, K.P.; Burnett, C.B.; Balshem, A.; Benson, A.B.; Castel, L.; Corbett, S.; Diefenbach, M.; Gaskin, D.; Li, Y.; et al. Perceptions of patients and physicians regarding phase I cancer clinical trials: Implications for physician-patient communication. J. Clin. Oncol. 2003, 21, 2589–2596. [Google Scholar] [CrossRef]
- Cheng, J.D.; Hitt, J.; Koczwara, B.; Schulman, K.A.; Burnett, C.B.; Gaskin, D.J.; Rowland, J.H.; Meropol, N.J. Impact of quality of life on patient expectations regarding phase I clinical trials. J. Clin. Oncol. 2000, 18, 421–428. [Google Scholar] [CrossRef]
- Horng, S.; Emanuel, E.J.; Wilfond, B.; Rackoff, J.; Martz, K.; Grady, C. Descriptions of benefits and risks in consent forms for phase 1 oncology trials. N. Engl. J. Med. 2002, 347, 2134–2140. [Google Scholar] [CrossRef]
- Chihara, D.; Lin, R.; Flowers, C.R.; Finnigan, S.R.; Cordes, L.M.; Fukuda, Y.; Huang, E.P.; Rubinstein, L.V.; Nastoupil, L.J.; Ivy, S.P.; et al. Early drug development in solid tumours: Analysis of National Cancer Institute-sponsored phase 1 trials. Lancet 2022, 400, 512–521. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE); Version 5.0; U.S. Department of Health and Human Services: Washington, DC, USA, 2017.
- O’Quigley, J.; Pepe, M.; Fisher, L. Continual reassessment method: A practical design for phase 1 clinical trials in cancer. Biometrics 1990, 46, 33–48. [Google Scholar] [CrossRef]
- Babb, J.S.; Rogatko, A.; Zacks, S. Cancer Phase I clinical trials: Efficient dose escalation with overdose control. Stat. Med. 1998, 17, 1103–1120. [Google Scholar] [CrossRef]
- Tighiouart, M.; Rogatko, A.; Babb, J.S. Flexible Bayesian methods for cancer phase I clinical trials. Dose escalation with overdose control. Stat. Med. 2005, 24, 2183–2196. [Google Scholar] [CrossRef]
- Tighiouart, M.; Rogatko, A. Dose finding with escalation with overdose control (EWOC) in cancer clinical trials. Stat. Sci. 2010, 25, 217–226. [Google Scholar] [CrossRef]
- Neuenschwander, B.; Branson, M.; Gsponer, T. Critical aspects of the Bayesian approach to phase I cancer trials. Stat. Med. 2008, 27, 2420–2439. [Google Scholar] [CrossRef]
- Clertant, M.; O’Quigley, J. Semiparametric dose finding methods. J. R. Stat. Ser. B (Stat. Methodol.) 2017, 79, 1487–1508. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, S.J. Modified toxicity probability interval design: A safer and more reliable method than the 3+3 design for practical phase I trials. J. Clin. Oncol. 2013, 31, 1785–1791. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, Y. Bayesian optimal interval designs for phase I clinical trials. J. R. Stat. Ser. C (Appl. Stat.) 2015, 64, 507–523. [Google Scholar] [CrossRef]
- Lin, R.; Yin, G. Nonparametric overdose control with late-onset toxicity in phase I clinical trials. Biostatistics 2017, 18, 180–194. [Google Scholar] [CrossRef]
- Iasonos, A.; Zohar, S.; O’Quigley, J. Incorporating lower grade toxicity information into dose finding designs. Clin. Trials 2011, 8, 370–379. [Google Scholar] [CrossRef]
- Tighiouart, M.; Cook-Wiens, G.; Rogatko, A. Escalation with overdose control using ordinal toxicity grades for cancer phase I clinical trials. J. Probab. Stat. 2012, 2012, 317634. [Google Scholar] [CrossRef]
- Chen, Z.; Tighiouart, M.; Kowalski, J. Dose escalation with overdose control using a quasi-continuous toxicity score in cancer phase I clinical trials. Contemp. Clin. Trials 2012, 33, 949–958. [Google Scholar] [CrossRef]
- Gordon, N.H.; Willson, J.K.V. Using toxicity grades in the design and analysis of cancer phase I clinical trials. Stat. Med. 1992, 11, 2063–2075. [Google Scholar] [CrossRef]
- Wang, C.; Chen, T.T.; Tyan, I. Designs for phase I cancer clinical trials with differentiation of graded toxicity. Commun. Stat. 2000, 29, 975–987. [Google Scholar] [CrossRef]
- Bekele, B.N.; Thall, P.F. Dose-finding based on multiple toxicities in a soft tissue sarcoma trial. J. Am. Stat. Assoc. 2004, 99, 26–35. [Google Scholar] [CrossRef]
- Yuan, Z.; Chappell, R.; Bailey, H. The continual reassessment method for multiple toxicity grades: A Bayesian quasi-likelihood approach. Biometrics 2007, 63, 173–179. [Google Scholar] [CrossRef]
- Potthoff, R.F.; George, S.L. Flexible phase I clinical trials: Allowing for nonbinary toxicity response and removal of other common limitations. Stat. Biopharm. Res. 2009, 1, 213–228. [Google Scholar] [CrossRef]
- Van Meter, E.M.; Garrett-Mayer, E.; Bandyopadhyay, D. Proportional odds model for dose finding clinical trial designs with ordinal toxicity grading. Stat. Med. 2011, 30, 2070–2080. [Google Scholar] [CrossRef]
- Lee, S.M.; Cheng, B.; Cheung, Y.K. Continual reassessment method with multiple toxicity constraints. Biostatistics 2011, 12, 386–398. [Google Scholar] [CrossRef]
- Diniz, M.A.; Kim, S.; Tighiouart, M. A Bayesian adaptive design in cancer phase I trials using dose combinations with ordinal toxicity grades. Stats 2020, 3, 221–238. [Google Scholar] [CrossRef]
- Tighiouart, M.; Cook-Wiens, G.; Rogatko, A. A Bayesian Adaptive Design for Cancer Phase I Trials Using a Flexible Range of Doses. J. Biopharm. Stat. 2018, 28, 562–574. [Google Scholar] [CrossRef]
- Babb, J.S.; Rogatko, A. Patient specific dosing in a cancer phase I clinical trial. Stat. Med. 2001, 20, 2079–2090. [Google Scholar] [CrossRef]
- Tuli, R.; Shiao, S.L.; Nissen, N.; Tighiouart, M.; Kim, S.; Osipov, A.; Bryant, M.; Ristow, L.; Placencio-Hickok, V.R.; Hoffman, D.; et al. A phase 1 study of veliparib, a PARP-1/2 inhibitor, with gemcitabine and radiotherapy in locally advanced pancreatic cancer. EBioMedicine 2019, 40, 375–381. [Google Scholar] [CrossRef]
- Gong, J.; Thomassian, S.; Kim, S.; Gresham, G.; Moshayedi, N.; Ye, J.; Yang, J.; Jacobs, J.; Lo, S.; Nissen, N.; et al. Phase I Trial of Bermekimab with Nanoliposomal Irinotecan and 5-Fluorouracil/Folinic Acid in Advanced Pancreatic Ductal Adenocarcinoma. Sci. Rep. 2022, 12, 15013. [Google Scholar] [CrossRef]
- Plummer, M. A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria, 20–22 March 2003; Volume 124, pp. 1–10. [Google Scholar]
- Zacks, S.; Rogatko, A.; Babb, J. Optimal Bayesian-feasibile dose escalation for cancer phase I trials. Stat. Probab. Lett. 1998, 38, 215–220. [Google Scholar] [CrossRef]
- Cheung, Y.K. Coherence principles in dose-finding studies. Biometrika 2005, 92, 863–873. [Google Scholar] [CrossRef]
- Chu, P.L.; Lin, Y.; Shih, W.J. Unifying CRM and EWOC designs for phase I cancer clinical trials. J. Stat. Plan. Inference 2009, 139, 1146–1163. [Google Scholar] [CrossRef]
- Simon, R.; Rubinstein, L.; Arbuck, S.G.; Christian, M.C.; Freidlin, B.; Collins, J. Accelerated titration designs for phase I clinical trials in oncology. J. Natl. Cancer Inst. 1997, 89, 1138–1147. [Google Scholar] [CrossRef]
Scenarios | Safety | Efficiency | ||||
---|---|---|---|---|---|---|
True MTD (mg/kg) | Ave DLT Rate | % Trials with DLT Rate > | Estimated MTD | Average Bias | Percent Selection | |
1: (0.12, 0.50, 0.95) | 4.53 | 0.38 | 22% | 5.04 | 1.30 | 65% |
2: (0.03, 0.50, 0.90) | 7.76 | 0.33 | 5% | 7.94 | 0.98 | 64% |
3: (0.01, 0.50, 0.40) | 14.02 | 0.22 | 0.0% | 13.6 | −0.36 | 78% |
4: (0.12, 0.80, 0.95) | 4.53 | 0.38 | 23% | 5.09 | 1.35 | 65% |
5: (0.03, 0.80, 0.90) | 7.76 | 0.34 | 5% | 7.96 | 0.99 | 63% |
6: (0.01, 0.80, 0.40) | 14.02 | 0.23 | 0% | 13.72 | −0.33 | 80% |
7: (0.20, 0.30, 0.70) | 5.21 | 0.35 | 12% | 6.56 | 1.98 | 74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tighiouart, M.; Rogatko, A. Dose Finding in Oncology Trials Guided by Ordinal Toxicity Grades Using Continuous Dose Levels. Entropy 2024, 26, 687. https://doi.org/10.3390/e26080687
Tighiouart M, Rogatko A. Dose Finding in Oncology Trials Guided by Ordinal Toxicity Grades Using Continuous Dose Levels. Entropy. 2024; 26(8):687. https://doi.org/10.3390/e26080687
Chicago/Turabian StyleTighiouart, Mourad, and André Rogatko. 2024. "Dose Finding in Oncology Trials Guided by Ordinal Toxicity Grades Using Continuous Dose Levels" Entropy 26, no. 8: 687. https://doi.org/10.3390/e26080687
APA StyleTighiouart, M., & Rogatko, A. (2024). Dose Finding in Oncology Trials Guided by Ordinal Toxicity Grades Using Continuous Dose Levels. Entropy, 26(8), 687. https://doi.org/10.3390/e26080687