Physical Realizations of Interdependent Networks: Analogy to Percolation
Abstract
:1. Introduction
2. Percolation on Interdependent Networks
3. Interdependent Ferromagnetic Networks
4. Interdependent Superconducting Networks
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GCC | giant connected component |
MGCC | mutual giant connected component |
IFN | interdependent ferromagnetic networks |
ISN | interdependent superconducting networks |
SC-state | superconducting state |
N-state | normal state |
References
- Bunde, A.; Havlin, S. Fractals and Disordered Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Newman, M. Networks; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef]
- Cohen, R.; Havlin, S. Complex Networks: Structure, Robustness and Function; Cambridge University Press: Oxford, UK, 2010. [Google Scholar]
- Erdős, P.; Rényi, A. On Random Graphs I. Publ. Math. Debr. 1959, 6, 290. [Google Scholar] [CrossRef]
- Erdős, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 1960, 5, 17–60. [Google Scholar]
- Bollobás, B.; Bollobás, B. Random Graphs; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Newman, M.; Ziff, R.M. Efficient Monte Carlo algorithm and high-precision results for percolation. Phys. Rev. Lett. 2000, 85, 4104. [Google Scholar] [CrossRef]
- Buldyrev, S.V.; Parshani, R.; Paul, G.; Stanley, H.E.; Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 2010, 464, 1025–1028. [Google Scholar] [CrossRef]
- Alert, R.; Tierno, P.; Casademunt, J. Mixed-order phase transition in a colloidal crystal. Proc. Natl. Acad. Sci. USA 2017, 114, 12906–12909. [Google Scholar] [CrossRef] [PubMed]
- Gross, B.; Bonamassa, I.; Havlin, S. Fractal fluctuations at mixed-order transitions in interdependent networks. Phys. Rev. Lett. 2022, 129, 268301. [Google Scholar] [CrossRef]
- Gao, J.; Li, D.; Havlin, S. From a single network to a network of networks. Natl. Sci. Rev. 2014, 1, 346–356. [Google Scholar] [CrossRef]
- Berezin, Y.; Bashan, A.; Danziger, M.M.; Li, D.; Havlin, S. Localized attacks on spatially embedded networks with dependencies. Sci. Rep. 2015, 5, 8934. [Google Scholar] [CrossRef]
- Parshani, R.; Buldyrev, S.V.; Havlin, S. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 2010, 105, 048701. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Bashan, A.; Cohen, R.; Berezin, Y.; Shnerb, N.; Havlin, S. Simultaneous first-and second-order percolation transitions in interdependent networks. Phys. Rev. E 2014, 90, 012803. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Goltsev, A.V.; Mendes, J.F.F. K-core organization of complex networks. Phys. Rev. Lett. 2006, 96, 040601. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Jo, M.; Kahng, B. Critical behavior of k-core percolation: Numerical studies. Phys. Rev. E 2016, 94, 062307. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Xue, L.; Gross, B.; She, Z.; Li, D.; Havlin, S. Possible origin for the similar phase transitions in k-core and interdependent networks. New J. Phys. 2024, 26, 013006. [Google Scholar] [CrossRef]
- Xue, L.; Gao, S.; Gallos, L.K.; Levy, O.; Gross, B.; Di, Z.; Havlin, S. Nucleation phenomena and extreme vulnerability of spatial k-core systems. Nat. Commun. 2024, 15, 5850. [Google Scholar] [CrossRef] [PubMed]
- Motter, A.E.; Lai, Y.C. Cascade-based attacks on complex networks. Phys. Rev. E 2002, 66, 065102. [Google Scholar] [CrossRef] [PubMed]
- Motter, A.E. Cascade control and defense in complex networks. Phys. Rev. Lett. 2004, 93, 098701. [Google Scholar] [CrossRef] [PubMed]
- Perez, I.A.; Ben Porath, D.; La Rocca, C.E.; Braunstein, L.A.; Havlin, S. Critical behavior of cascading failures in overloaded networks. Phys. Rev. E 2024, 109, 034302. [Google Scholar] [CrossRef] [PubMed]
- Bonamassa, I.; Gross, B.; Laav, M.; Volotsenko, I.; Frydman, A.; Havlin, S. Interdependent superconducting networks. Nat. Phys. 2023, 19, 1163–1170. [Google Scholar] [CrossRef]
- Gross, B.; Volotsenko, I.; Bonamassa, I.; Havlin, S.; Frydman, A. Microscopic origin of abrupt transition in interdependent superconducting networks. arXiv 2024, arXiv:2403.03050. [Google Scholar]
- Danziger, M.M.; Bashan, A.; Havlin, S. Interdependent resistor networks with process-based dependency. New J. Phys. 2015, 17, 043046. [Google Scholar] [CrossRef]
- Bonamassa, I.; Gross, B.; Havlin, S. Interdependent couplings map to thermal, higher-order interactions. arXiv 2021, arXiv:2110.08907. [Google Scholar]
- Gross, B.; Bonamassa, I.; Havlin, S. Microscopic Intervention Yields Abrupt Transition in Interdependent Ferromagnetic Networks. Phys. Rev. Lett. 2024, 132, 227401. [Google Scholar] [CrossRef] [PubMed]
- Ising, E. Beitrag zur Theorie des Ferro-und Paramagnetismus. Ph.D. Thesis, Grefe & Tiedemann, Hamburg, Germany, 1924. [Google Scholar]
- McCoy, B.M.; Wu, T.T. The Two-Dimensional Ising Model; Harvard University Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Pippard, A.B. Magnetoresistance in Metals; Cambridge University Press: Cambridge, UK, 1989; Volume 2. [Google Scholar]
- Xiao, J.Q.; Jiang, J.S.; Chien, C.L. Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett. 1992, 68, 3749. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Buldyrev, S.V.; Stanley, H.E.; Havlin, S. Networks formed from interdependent networks. Nat. Phys. 2012, 8, 40–48. [Google Scholar] [CrossRef]
- Zapperi, S.; Vespignani, A.; Stanley, H.E. Plasticity and avalanche behaviour in microfracturing phenomena. Nature 1997, 388, 658–660. [Google Scholar] [CrossRef]
- Zapperi, S.; Lauritsen, K.B.; Stanley, H.E. Self-organized branching processes: Mean-field theory for avalanches. Phys. Rev. Lett. 1995, 75, 4071. [Google Scholar] [CrossRef] [PubMed]
- Alava, M.J.; Nukala, P.K.; Zapperi, S. Statistical models of fracture. Adv. Phys. 2006, 55, 349–476. [Google Scholar] [CrossRef]
- Pradhan, S.; Hansen, A.; Chakrabarti, B.K. Failure processes in elastic fiber bundles. Rev. Mod. Phys. 2010, 82, 499–555. [Google Scholar] [CrossRef]
- Rundle, J.B.; Turcotte, D.L.; Shcherbakov, R.; Klein, W.; Sammis, C. Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef]
- Peng, H.; Zhao, Y.; Zhao, D.; Zhong, M.; Hu, Z.; Han, J.; Li, R.; Wang, W. Robustness of higher-order interdependent networks. Chaos Solitons Fractals 2023, 171, 113485. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, Y.; Zheng, K.; Wang, W. Robustness of interdependent higher-order networks. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 073121. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Zhao, D.; Zhong, M.; Peng, H.; Wang, W. Cascading failures on interdependent hypergraph. Commun. Nonlinear Sci. Numer. Simul. 2024, 138, 108237. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Meng, F.; Liu, R.R. Catastrophic cascade of failures in interdependent hypergraphs. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34. [Google Scholar] [CrossRef]
- Liu, R.R.; Chu, C.; Meng, F. Higher-order interdependent percolation on hypergraphs. Chaos Solitons Fractals 2023, 177, 114246. [Google Scholar] [CrossRef]
- Gerber, A.; Milner, A.; Groisman, B.; Karpovsky, M.; Gladkikh, A.; Sulpice, A. Magnetoresistance of granular ferromagnets. Phys. Rev. B 1997, 55, 6446. [Google Scholar] [CrossRef]
- Milner, A.; Gerber, A.; Groisman, B.; Karpovsky, M.; Gladkikh, A. Spin-dependent electronic transport in granular ferromagnets. Phys. Rev. Lett. 1996, 76, 475. [Google Scholar] [CrossRef]
- Nika, G.; Constantinescu, A. Design of multi-layer materials using inverse homogenization and a level set method. Comput. Methods Appl. Mech. Eng. 2019, 346, 388–409. [Google Scholar] [CrossRef]
- Roudgé, M.; Cherif, M.; Cahuc, O.; Darnis, P.; Danis, M. Multi-layer materials. Qualitative approach of the process. Int. J. Mater. Form. 2008, 1, 949–952. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gross, B.; Havlin, S. Physical Realizations of Interdependent Networks: Analogy to Percolation. Entropy 2025, 27, 109. https://doi.org/10.3390/e27020109
Gross B, Havlin S. Physical Realizations of Interdependent Networks: Analogy to Percolation. Entropy. 2025; 27(2):109. https://doi.org/10.3390/e27020109
Chicago/Turabian StyleGross, Bnaya, and Shlomo Havlin. 2025. "Physical Realizations of Interdependent Networks: Analogy to Percolation" Entropy 27, no. 2: 109. https://doi.org/10.3390/e27020109
APA StyleGross, B., & Havlin, S. (2025). Physical Realizations of Interdependent Networks: Analogy to Percolation. Entropy, 27(2), 109. https://doi.org/10.3390/e27020109