High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication
Abstract
:1. Introduction
2. Our Protocol
3. Security Analysis
4. Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Details of Encoding and Decoding Processes
- (1)
- Alice uses to pre-encrypt into the ciphertext .
- (2)
- Alice pre-encodes into , which is stored in a cache.
- (3)
- Alice fetches the -bit length of from the cache to accomplish secure coding, where the parameters should satisfy Equation (A1) and the output is .
- (4)
- Alice applies INCUM using a locally generated random bit string , and obtains .
- (5)
- Alice modulates into qubits if she selects the coding mode in Step 2 of our protocol, otherwise she prepares the multi-intensity mode.
- (6)
- Charlie conducts Step 3.
- (7)
- Steps (5) to (6) are repeated until is entirely transmitted.
- (8)
- Alice and Bob conduct Step 4 and Step 5 and use these parameters to calculate , , and . If Equation (A1) is satisfied, a shared key could be distilled for future frames.
- (9)
- Steps (3) to (8) are repeated until is entirely transmitted.
- (10)
- Alice announces random bit values of in positions where Bob has received information. Bob first applies de-INCUM to obtain and then decodes to with a secure coding decoder. After that he obtains from a -LDPC decoder and finally retrieves the original message utilizing the shared key .
Appendix B. Details of Security Analysis
References
- Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum Cryptography Based on Bell’s Theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Mermin, N.D. Quantum Cryptography without Bell’s Theorem. Phys. Rev. Lett. 1992, 68, 557–559. [Google Scholar] [CrossRef]
- Lo, H.K.; Chau, H.F. Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science 1999, 283, 2050–2056. [Google Scholar] [CrossRef]
- Tomamichel, M.; Leverrier, A. A Largely Self-Contained and Complete Security Proof for Quantum Key Distribution. Quantum 2017, 1, 14. [Google Scholar] [CrossRef]
- Curty, M.; Azuma, K.; Lo, H.K. Simple Security Proof of Twin-Field Type Quantum Key Distribution Protocol. npj Quantum Inf. 2019, 5, 11. [Google Scholar] [CrossRef]
- Lo, H.K.; Ma, X.F.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.F.; Qi, B.; Zhao, Y.; Lo, H.K. Practical Decoy State for Quantum Key Distribution. Phys. Rev. A 2005, 72, 012326. [Google Scholar] [CrossRef]
- Wang, X.B. Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef]
- Wang, W.; Tamaki, K.; Curty, M. Measurement-Device-Independent Quantum Key Distribution with Leaky Sources. Sci. Rep. 2021, 11, 1678. [Google Scholar] [CrossRef]
- Wang, C.; Yin, Z.Q.; Wang, S.; Chen, W.; Guo, G.C.; Han, Z.F. Measurement-Device-Independent Quantum Key Distribution Robust against Environmental Disturbances. Optica 2017, 4, 1016–1023. [Google Scholar] [CrossRef]
- Long, G.L.; Liu, X.S. Theoretically Efficient High-Capacity Quantum-Key-Distribution Scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef]
- Deng, F.G.; Long, G.L. Secure Direct Communication with a Quantum One-Time Pad. Phys. Rev. A 2004, 69, 052319. [Google Scholar] [CrossRef]
- Mi, S.; Wang, T.j.; Jin, G.s.; Wang, C. High-Capacity Quantum Secure Direct Communication with Orbital Angular Momentum of Photons. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Wu, F.; Yang, G.; Wang, H.; Xiong, J.; Alzahrani, F.; Hobiny, A.; Deng, F. High-Capacity Quantum Secure Direct Communication with Two-Photon Six-Qubit Hyperentangled States. Sci. China Phys. Mech. Astron. 2017, 60, 120313. [Google Scholar] [CrossRef]
- Ahn, B.; Park, J.; Lee, J.; Lee, S. High-Dimensional Single Photon Based Quantum Secure Direct Communication Using Time and Phase Mode Degrees. Sci. Rep. 2024, 14, 888. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, L.; Liang, K.; Chai, G.; Peng, J. Continuous-Variable Quantum Secure Direct Communication Based on Gaussian Mapping. Phys. Rev. Appl. 2021, 16, 024012. [Google Scholar] [CrossRef]
- Niu, P.H.; Zhou, Z.R.; Lin, Z.S.; Sheng, Y.B.; Yin, L.G.; Long, G.L. Measurement-Device-Independent Quantum Communication without Encryption. Sci. Bull. 2018, 63, 1345–1350. [Google Scholar] [CrossRef]
- Liu, L.; Niu, J.L.; Fan, C.R.; Feng, X.T.; Wang, C. High-Dimensional Measurement-Device-Independent Quantum Secure Direct Communication. Quantum Inf. Process. 2020, 19, 404. [Google Scholar] [CrossRef]
- Ying, J.W.; Zhou, L.; Zhong, W.; Sheng, Y.B. Measurement-Device-Independent One-Step Quantum Secure Direct Communication. Chin. Phys. B 2022, 31, 120303. [Google Scholar] [CrossRef]
- Zhou, L.; Sheng, Y.B. One-Step Device-Independent Quantum Secure Direct Communication. Sci. China Phys. Mech. Astron. 2022, 65, 250311. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, B.W.; Zhong, W.; Sheng, Y.B. Device-Independent Quantum Secure Direct Communication with Single-Photon Sources. Phys. Rev. Appl. 2023, 19, 014036. [Google Scholar] [CrossRef]
- Das, N.; Basu, S.; Paul, G.; Rao, V.S. User-Authenticated Device-Independent Quantum Secure Direct Communication Protocol. In Proceedings of the 2024 IEEE 37th International System-on-Chip Conference (SOCC), Dresden, Germany, 16–19 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Pan, D.; Long, G.L.; Yin, L.; Sheng, Y.B.; Ruan, D.; Ng, S.X.; Lu, J.; Hanzo, L. The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet. IEEE Commun. Surv. Tutor. 2024, 26, 1898–1949. [Google Scholar] [CrossRef]
- Ding, Y.; Bacco, D.; Dalgaard, K.; Cai, X.; Zhou, X.; Rottwitt, K.; Oxenløwe, L.K. High-Dimensional Quantum Key Distribution Based on Multicore Fiber Using Silicon Photonic Integrated Circuits. npj Quantum Inf. 2017, 3, 25. [Google Scholar] [CrossRef]
- Kwek, L.C.; Cao, L.; Luo, W.; Wang, Y.; Sun, S.; Wang, X.; Liu, A.Q. Chip-Based Quantum Key Distribution. AAPPS Bull. 2021, 31, 15. [Google Scholar] [CrossRef]
- Xie, Y.M.; Lu, Y.S.; Weng, C.X.; Cao, X.Y.; Jia, Z.Y.; Bao, Y.; Wang, Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference. PRX Quantum 2022, 3, 020315. [Google Scholar] [CrossRef]
- Yang, K.X.; Mao, Y.L.; Chen, H.; Dong, X.; Zhu, J.; Wu, J.; Li, Z.D. Experimental Measurement-Device-Independent Quantum Conference Key Agreement. Phys. Rev. Lett. 2024, 133, 210803. [Google Scholar] [CrossRef]
- Wang, S.; He, D.Y.; Yin, Z.Q.; Lu, F.Y.; Cui, C.H.; Chen, W.; Zhou, Z.; Guo, G.C.; Han, Z.F. Beating the Fundamental Rate-Distance Limit in a Proof-of-Principle Quantum Key Distribution System. Phys. Rev. X 2019, 9, 021046. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, D.S.; Sheng, Y.B.; Zhou, L.; Shi, B.S.; Guo, G.C. Quantum Secure Direct Communication with Quantum Memory. Phys. Rev. Lett. 2017, 118, 220501. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, W.; Sheng, Y.; Huang, Y. Experimental Long-Distance Quantum Secure Direct Communication. Sci. Bull. 2017, 62, 1519–1524. [Google Scholar] [CrossRef]
- Qi, Z.; Li, Y.; Huang, Y.; Feng, J.; Zheng, Y.; Chen, X. A 15-User Quantum Secure Direct Communication Network. Light Sci. Appl. 2021, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Lu, Y.; Chai, G.; Yu, H.; Liang, K.; Wang, L. Realization of Quantum Secure Direct Communication with Continuous Variable. Research 2023, 6, 0193. [Google Scholar] [CrossRef]
- Pan, D.; Liu, Y.C.; Niu, P.; Zhang, H.; Zhang, F.; Wang, M.; Song, X.T.; Chen, X.; Zheng, C.; Long, G.L. Simultaneous Transmission of Information and Key Exchange Using the Same Photonic Quantum States. Sci. Adv. 2025, 11, eadt4627. [Google Scholar] [CrossRef]
- Wu, J.; Lin, Z.; Yin, L.; Long, G.L. Security of Quantum Secure Direct Communication Based on Wyner’s Wiretap Channel Theory. Quantum Eng. 2019, 1, e26. [Google Scholar] [CrossRef]
- Sun, Z.; Song, L.; Huang, Q.; Yin, L.; Long, G.L.; Lu, J.; Hanzo, L. Toward Practical Quantum Secure Direct Communication: A Quantum-Memory-Free Protocol and Code Design. IEEE Trans. Commun. 2020, 68, 5778–5792. [Google Scholar] [CrossRef]
- Wyner, A.D. The Wire-Tap Channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Bellare, M.; Tessaro, S.; Vardy, A. Semantic Security for the Wiretap Channel. In Advances in Cryptology—CRYPTO 2012; Safavi-Naini, R., Canetti, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 294–311. [Google Scholar] [CrossRef]
- Shah, S.M.; Sharma, V. Enhancing Secrecy Rates in a Wiretap Channel. Digit. Commun. Netw. 2020, 6, 129–135. [Google Scholar] [CrossRef]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the Rate-Distance Limit of Quantum Key Distribution without Quantum Repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental Limits of Repeaterless Quantum Communications. Nat. Commun. 2017, 8, 15043. [Google Scholar] [CrossRef]
- Ma, X.F.; Zeng, P.; Zhou, H. Phase-Matching Quantum Key Distribution. Phys. Rev. X 2018, 8, 031043. [Google Scholar] [CrossRef]
- Wang, X.B.; Yu, Z.W.; Hu, X.L. Sending or Not Sending: Twin-Field Quantum Key Distribution with Large Misalignment Error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef]
- Yu, Z.W.; Hu, X.L.; Jiang, C.; Xu, H.; Wang, X.B. Sending-or-Not-Sending Twin-Field Quantum Key Distribution in Practice. Sci. Rep. 2019, 9, 3080. [Google Scholar] [CrossRef]
- Cui, C.; Yin, Z.Q.; Wang, R.; Chen, W.; Wang, S.; Guo, G.C.; Han, Z.F. Twin-Field Quantum Key Distribution without Phase Postselection. Phys. Rev. Appl. 2019, 11, 034053. [Google Scholar] [CrossRef]
- Wang, R.; Yin, Z.Q.; Lu, F.Y.; Wang, S.; Chen, W.; Zhang, C.M.; Huang, W.; Xu, B.J.; Guo, G.C.; Han, Z.F. Optimized Protocol for Twin-Field Quantum Key Distribution. Commun. Phys. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Zeng, P.; Zhou, H.; Wu, W.; Ma, X. Mode-Pairing Quantum Key Distribution. Nat. Commun. 2022, 13, 3903. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Wang, M.; Pan, X.B.; Zhang, Y.R.; Long, G.L. One-Photon-Interference Quantum Secure Direct Communication. Entropy 2024, 26, 811. [Google Scholar] [CrossRef]
- Long, G.L.; Zhang, H. Drastic Increase of Channel Capacity in Quantum Secure Direct Communication Using Masking. Sci. Bull. 2021, 66, 1267–1269. [Google Scholar] [CrossRef]
- Csiszar, I.; Korner, J. Broadcast Channels with Confidential Messages. IEEE Trans. Inf. Theory 1978, 24, 339–348. [Google Scholar] [CrossRef]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking Commercial Quantum Cryptography Systems by Tailored Bright Illumination. Nat. Photonics 2010, 4, 686–689. [Google Scholar] [CrossRef]
- Weier, H.; Krauss, H.; Rau, M.; Fürst, M.; Nauerth, S.; Weinfurter, H. Quantum Eavesdropping without Interception: An Attack Exploiting the Dead Time of Single-Photon Detectors. New J. Phys. 2011, 13, 073024. [Google Scholar] [CrossRef]
- Jain, N.; Anisimova, E.; Khan, I.; Makarov, V.; Marquardt, C.; Leuchs, G. Trojan-Horse Attacks Threaten the Security of Practical Quantum Cryptography. New J. Phys. 2014, 16, 123030. [Google Scholar] [CrossRef]
- Scarani, V.; Renner, R. Security Bounds for Quantum Cryptography with Finite Resources. In Theory of Quantum Computation, Communication, and Cryptography; Kawano, Y., Mosca, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 83–95. [Google Scholar] [CrossRef]
- Li, H.W.; Zhao, Y.B.; Yin, Z.Q.; Wang, S.; Han, Z.F.; Bao, W.S.; Guo, G.C. Security of Decoy States QKD with Finite Resources against Collective Attacks. Opt. Commun. 2009, 282, 4162–4166. [Google Scholar] [CrossRef]
- Tomamichel, M.; Lim, C.C.W.; Gisin, N.; Renner, R. Tight Finite-Key Analysis for Quantum Cryptography. Nat. Commun. 2012, 3, 634. [Google Scholar] [CrossRef]
- Wu, J.; Long, G.L.; Hayashi, M. Quantum Secure Direct Communication with Private Dense Coding Using a General Preshared Quantum State. Phys. Rev. Appl. 2022, 17, 064011. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Pan, D.; Cheng, Y.B.; Liu, Y.C.; Ruan, D.; Long, G.L. Multi-Intensity Quantum Secure Direct Communication Relying on Finite Block-Length. IEEE Trans. Commun. 2024, 72, 4633–4647. [Google Scholar] [CrossRef]
- Du, H.; Paraiso, T.K.; Pittaluga, M.; Lo, Y.S.; Dolphin, J.A.; Shields, A.J. Twin-Field Quantum Key Distribution with Optical Injection Locking and Phase Encoding on-Chip. Optica 2024, 11, 1385–1390. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, J.P.; Xing, T.; Wang, D.; Wang, Y.; Liu, Y.; Huang, A. Practical Security of Twin-Field Quantum Key Distribution with Optical Phase-Locked Loop under Wavelength-Switching Attack. npj Quantum Inf. 2025, 11, 7. [Google Scholar] [CrossRef]
- Hao, H.; Zhao, Q.Y.; Huang, Y.H.; Deng, J.; Yang, F.; Ru, S.Y.; Liu, Z.; Wan, C.; Liu, H.; Li, Z.J.; et al. A Compact Multi-Pixel Superconducting Nanowire Single-Photon Detector Array Supporting Gigabit Space-to-Ground Communications. Light Sci. Appl. 2024, 13, 25. [Google Scholar] [CrossRef]
- Zou, K.; Hu, X. Fabrication Development of High-Performance Fractal Superconducting Nanowire Single-Photon Detectors. IEEE J. Sel. Top. Quantum Electron. 2024, 31, 3801410. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, Z.Q.; Wang, R.Q.; Wang, S.; Chen, W.; Guo, G.C.; Han, Z.F. Twin-Field Quantum Key Distribution with Partial Phase Postselection. Phys. Rev. Appl. 2022, 18, 054026. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, J.; Jing, Y.; Yuan, Z. Twin-Field Quantum Key Distribution without Optical Frequency Dissemination. Nat. Commun. 2023, 14, 928. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Wang, W.; Qian, L.; Lo, H.K. Proof-of-Principle Experimental Demonstration of Twin-Field Quantum Key Distribution over Optical Channels with Asymmetric Losses. npj Quantum Inf. 2021, 7, 8. [Google Scholar] [CrossRef]
- Wang, S.; Yin, Z.Q.; He, D.Y.; Chen, W.; Wang, R.Q.; Ye, P.; Zhou, Y.; Fan-Yuan, G.J.; Wang, F.X.; Chen, W.; et al. Twin-Field Quantum Key Distribution over 830-Km Fibre. Nat. Photonics 2022, 16, 154–161. [Google Scholar] [CrossRef]
- Clivati, C.; Meda, A.; Donadello, S.; Virzì, S.; Genovese, M.; Levi, F.; Mura, A.; Pittaluga, M.; Yuan, Z.; Shields, A.J.; et al. Coherent Phase Transfer for Real-World Twin-Field Quantum Key Distribution. Nat. Commun. 2022, 13, 157. [Google Scholar] [CrossRef] [PubMed]
- Renner, R. Symmetry of Large Physical Systems Implies Independence of Subsystems. Nat. Phys. 2007, 3, 645–649. [Google Scholar] [CrossRef]
- Holevo, A.S. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf. 1973, 9, 3–11. [Google Scholar]
Parameter | Value | Description |
---|---|---|
0.2 dB/km | attenuation coefficient | |
14.5% | detector efficiency | |
8 × 10−8 | dark count rate | |
1.5% | misalignment error | |
f | 1.2 | FEC efficiency |
u | 0.15 | light intensity |
DL04 [14] | MDI-QSDC [19] | OPI-QSDC [49] | Our Protocols | |
---|---|---|---|---|
Quantum resources | single photons (ideal) WCSs (practical) | single photons and entanglement pairs | single photons (ideal) WCSs (practical) | single photons (ideal) WCSs (practical) |
Encode messages in | polarizations | Bell states | phases | multislice phases |
Resistance to measurement-device attacks? | No | Yes | Yes | Yes |
Resistance to PNS attacks? | No | No | Yes | Yes |
Quantum memory free? | No | No | Yes | Yes |
Break PLOB bound? | No | No | Yes | Yes |
Approx. secrecy capacity at 100 km (bit/pulse) | 1.03 × 10−5 | 1.16 × 10−8 | 5.72 × 10−4 | 1.05 × 10−3 () 1.15 × 10−4 () |
Approx. distance at 1 × 10−10 bit/pulse secrecy capacity | 156.48 km | 151.61 km | 434.76 km | 485.07 km () 493.94 km () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.-T.; Li, X.-J.; Pan, X.-B.; Zhang, Y.-R.; Long, G.-L. High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication. Entropy 2025, 27, 332. https://doi.org/10.3390/e27040332
Lei Y-T, Li X-J, Pan X-B, Zhang Y-R, Long G-L. High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication. Entropy. 2025; 27(4):332. https://doi.org/10.3390/e27040332
Chicago/Turabian StyleLei, Yu-Ting, Xiang-Jie Li, Xing-Bo Pan, Yun-Rong Zhang, and Gui-Lu Long. 2025. "High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication" Entropy 27, no. 4: 332. https://doi.org/10.3390/e27040332
APA StyleLei, Y.-T., Li, X.-J., Pan, X.-B., Zhang, Y.-R., & Long, G.-L. (2025). High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication. Entropy, 27(4), 332. https://doi.org/10.3390/e27040332