Too Sensitive to Fail: The Impact of Sentiment Connectedness on Stock Price Crash Risk
Abstract
:1. Introduction
2. Methodology
2.1. Sentiment Spillover Network
2.1.1. Sentiment Spillover Network Construction
2.1.2. Measuring the Firm’s Sentiment Connectedness: An Entropy Weight Method
2.2. Model Identification and Variable Measurements
3. Data
4. Empirical Results
4.1. Sentiment Spillover Network Among S&P 500 Stocks
4.2. Quantifying the Impact of Sentiment Spillover on Crash Risk
4.3. Robust Test
4.3.1. Endogeneity: Instrumental Variables
4.3.2. Endogeneity: Propensity Score Matching
4.3.3. The Effect of Network Centrality Measures
4.3.4. The Peer Effect
4.3.5. The Effect of High-Frequency Trading
4.4. Comparison of Firms’ Individual Sentiment and the Sentiment Connectedness
4.5. Potential Channel Analysis
4.5.1. Moderation Effects of Stock Price Synchronicity
4.5.2. Moderation Effects of Accounting Conservatism (Cscore)
4.6. Further Analyses
4.6.1. The Effect of Shareholding Structure
4.6.2. The Effect of Financial Condition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Variable Measurement
Variable | Definition |
The negative coefficient of skewness, calculated by taking the negative of the third moment of firm-specific weekly returns for each year and dividing it by the cubic standard deviation of firm-specific weekly returns. See Equation (7). | |
The other measurement of crash risk; we separate all the weeks with firm-specific weekly returns above the annual average (up weeks) from those with firm-specific returns below the annual mean (down weeks) and compute the standard deviation for each sub-sample. See Equation (8). | |
The financial condition estimated following Li et al. (2017) [82]. See Appendix B for a more detailed explanation and calculate it with Equation (A2). | |
The conservatism score estimated following Khan and Watts (2009) [77]. See Appendix B for a more detailed explanation and calculate it with Equation (A1). | |
Measure of stock return synchronicity developed by Morck et al. (2000) [86]. See Appendix B for a more detailed explanation and calculate it with Equations (A3) and (A4). | |
The natural logarithm of the company’ s total assets for each sample year. | |
It refers to the book value of all liabilities divided by total assets at the end of a fiscal year. | |
A ratio representing the efficiency of the use of shareholders’ funds. | |
The market-to-book ratio of firm i in year t, that is, (market price at the end of fiscal year × number of shares outstanding + net asset value per share × number of non-tradable outstanding shares)/book value of equity. | |
A measure of financial reporting opaqueness whose calculation is the 3-year moving sum of the absolute value of annual performance-adjusted discretionary accruals. | |
It is a proxy for the level of investor disagreement whose calculation is the average monthly share turnover over the current fiscal year minus the average monthly share turnover over the previous year, where monthly share turnover is calculated as the monthly share-trading volume divided by the number of shares outstanding over the month. | |
The HFT market size in the U.S. from the ISIB World website; the is measured by one thousand billion dollars. |
Appendix B. Corporate Governance and Synchronicity
Appendix B.1. Measurement of Firm-Specific Accounting Conservatism (Cscore)
Appendix B.2. Measurement of Firm-Specific Financial Distress (Distress)
Appendix B.3. Measurement of Firm-Specific Stock Price Synchronicity
References
- Chong, E.; Ho, C.C.; Ong, Z.F.; Ong, H.H. Using news sentiment for economic forecasting: A Malaysian case study. In Machine Learning in Central Banking; Bank for International Settlements, Ed.; Volume 57 of IFC Bulletins Chapters; Bank for International Settlements: Basel, Switzerland, 2022. [Google Scholar]
- Correa, R.; Garud, K.; Londono, J.M.; Mislang, N. Sentiment in central banks’ financial stability reports. Rev. Financ. 2021, 25, 85–120. [Google Scholar]
- Bennani, H. Central bank communication in the media and investor sentiment. J. Econ. Behav. Organ. 2020, 176, 431–444. [Google Scholar]
- Jang, J.; Kang, J. Probability of price crashes, rational speculative bubbles, and the cross-section of stock returns. J. Financ. Econ. 2019, 132, 222–247. [Google Scholar] [CrossRef]
- Abakah, E.J.A.; Abdullah, M.; Yousaf, I.; Tiwari, A.K.; Li, Y. Economic sanctions news sentiments and global stock markets during the Russia-Ukraine conflict. J. Int. Financ. Mark. Inst. Money 2023, 91, 101910. [Google Scholar]
- Baker, M.; Wurgler, J. Investor sentiment in the stock market. J. Econ. Perspect. 2007, 21, 129–151. [Google Scholar] [CrossRef]
- OECD. Impacts of the Russian Invasion of Ukraine on Financial Market Conditions and Resilience; Technical Report; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Brandt, M.W.; Gao, L. Macro fundamentals or geopolitical events? A textual analysis of news events for crude oil. J. Empir. Financ. 2019, 51, 64–94. [Google Scholar]
- Wang, X.; Wu, Y.; Xu, W. Geopolitical risk and investment. J. Money Credit Bank. 2024, 56, 2023–2059. [Google Scholar]
- Welch, I. The wisdom of the robinhood crowd. J. Financ. 2022, 77, 1489–1527. [Google Scholar]
- Barberis, N.; Shleifer, A.; Vishny, R. A model of investor sentiment. J. Financ. Econ. 1998, 49, 307–343. [Google Scholar]
- Chang, X.; Chen, Y.; Zolotoy, L. Stock liquidity and stock price crash risk. J. Financ. Quant. Anal. 2017, 52, 1605–1637. [Google Scholar]
- Reichmann, D.; Möller, R.; Hertel, T. Nothing but good intentions: The search for equity and stock price crash risk. J. Bus. Econ. 2022, 92, 1455–1489. [Google Scholar] [CrossRef]
- West, K.D. Dividend innovations and stock price volatility. Econ. J. Econ. Soc. 1988, 56, 37–61. [Google Scholar] [CrossRef]
- Shiller, R.J. Market volatility and investor behavior. Am. Econ. Rev. 1990, 80, 58–62. [Google Scholar]
- Maxted, P. A macro-finance model with sentiment. Rev. Econ. Stud. 2023, 91, 438–475. [Google Scholar] [CrossRef]
- Kalyvas, A.; Papakyriakou, P.; Sakkas, A.; Urquhart, A. What drives bitcoin’s price crash risk? Econ. Lett. 2019, 191, 108777. [Google Scholar] [CrossRef]
- Chiu, C.J.; Harris, R.D.F.; Stoja, E.; Chin, M. Financial market volatility, macroeconomic fundamentals and investor sentiment. J. Bank. Financ. 2018, 92, 130–145. [Google Scholar] [CrossRef]
- Liang, W. Sensitivity to investor sentiment and stock performance of open market share repurchases. J. Bank. Financ. 2016, 71, 75–94. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J.; Yuan, Y. Global, local, and contagious investor sentiment. J. Financ. Econ. 2012, 104, 272–287. [Google Scholar] [CrossRef]
- Han, M.; Zhou, J. Multi-Scale Characteristics of Investor Sentiment Transmission Based on Wavelet, Transfer Entropy and Network Analysis. Entropy 2022, 24, 1786. [Google Scholar] [CrossRef]
- Billio, M.; Getmansky, M.; Lo, A.W.; Pelizzon, L. Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J. Financ. Econ. 2012, 104, 535–559. [Google Scholar] [CrossRef]
- Cao, J.; Wen, F.; Eugene, S.H. Measuring the systemic risk in indirect financial networks. Eur. J. Financ. 2022, 28, 1053–1098. [Google Scholar]
- El-Khatib, R.; Fogel, K.; Jandik, T. CEO network centrality and merger performance. J. Financ. Econ. 2015, 116, 349–382. [Google Scholar] [CrossRef]
- Baltakys, K.; Le Viet, H.; Kanniainen, J. Structure of Investor Networks and Financial Crises. Entropy 2021, 23, 381. [Google Scholar] [CrossRef]
- Gao, X.; Huang, S.; Sun, X.; Hao, X.; An, F. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system. R. Soc. Open Sci. 2018, 5, 172092. [Google Scholar] [PubMed]
- Chen, M.; Wang, Y.; Wu, B.; Huang, D. Dynamic Analyses of Contagion Risk and Module Evolution on the SSE A-Shares Market Based on Minimum Information Entropy. Entropy 2021, 23, 434. [Google Scholar] [CrossRef]
- Gong, X.-L.; Liu, J.-M.; Xiong, X.; Zhang, W. Research on stock volatility risk and investor sentiment contagion from the perspective of multi-layer dynamic network. Int. Rev. Financ. Anal. 2022, 84, 102359. [Google Scholar]
- Jackson, M.O. Social and Economic Networks; Princeton University Press: Princeton, NJ, USA, 2008; Volume 3. [Google Scholar]
- Pittman, J.; Wang, L.; Wu, D. Network analysis of audit partner rotation. Contemp. Account. Res. 2022, 39, 1085–1119. [Google Scholar]
- Janczewski, A.; Anagnostou, I.; Kandhai, D. Inferring Dealer Networks in the Foreign Exchange Market Using Conditional Transfer Entropy: Analysis of a Central Bank Announcement. Entropy 2024, 26, 738. [Google Scholar] [CrossRef]
- Goergen, M.; Renneboog, L.; Zhao, Y. Insider trading and networked directors. J. Corp. Financ. 2019, 56, 152–175. [Google Scholar]
- Kamate, V.; Kumar, A. Dealer networks, client sophistication and pricing in OTC derivatives. J. Int. Money Financ. 2024, 140, 102986. [Google Scholar]
- Gao, Q.; Fan, H.; Yu, C. Systemic Importance and Risk Characteristics of Banks Based on a Multi-Layer Financial Network Analysis. Entropy 2024, 26, 378. [Google Scholar] [CrossRef] [PubMed]
- Godigbe, B.G.; Chui, C.M.; Liu, C.L. Directors network centrality and earnings quality. Appl. Econ. 2018, 50, 5381–5400. [Google Scholar]
- Costenbader, E.; Valente, T.W. The stability of centrality measures when networks are sampled. Soc. Netw. 2003, 25, 283–307. [Google Scholar]
- Audrito, G.; Pianini, D.; Damiani, F.; Viroli, M. Aggregate centrality measures for IoT-based coordination. Sci. Comput. Program. 2021, 203, 102584. [Google Scholar]
- Yan, X.L.; Cui, Y.P.; Ni, S.J. Identifying influential spreaders in complex networks based on entropy weight method and gravity law. Chin. Phys. B 2020, 29, 048902. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Yousaf, I.; Youssef, M.; Goodell, J.W. Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index. Int. Rev. Financ. Anal. 2022, 83, 102322. [Google Scholar]
- Daring, J.R. Crisis management in international business: Keys to effective decision making. Leadersh. Organ. Dev. J. 1994, 15, 3–8. [Google Scholar]
- Xu, N.; Li, X.; Yuan, Q.; Chan, K.C. Excess perks and stock price crash risk: Evidence from China. J. Corp. Financ. 2014, 25, 419–434. [Google Scholar]
- An, H.; Zhang, T. Stock price synchronicity, crash risk, and institutional investors. J. Corp. Financ. 2013, 21, 1–15. [Google Scholar]
- Durnev, A.; Morck, R.; Yeung, B.; Zarowin, P. Does greater firm-specific return variation mean more or less informed stock pricing? J. Account. Res. 2003, 41, 797–836. [Google Scholar]
- Kumar, A.; Lee, C.M.C. Retail investor sentiment and return comovements. J. Financ. 2006, 61, 2451–2486. [Google Scholar] [CrossRef]
- De, L.J.B.; Shleifer, A.; Summers, L.H. Noise trader risk in financial markets. J. Political Econ. 1990, 98, 703–738. [Google Scholar]
- Han, B. Investor sentiment and option prices. Rev. Financ. Stud. 2008, 21, 387–414. [Google Scholar] [CrossRef]
- Pham, M.D.M.; Nguyen, T.H. When a gift resembles a trojan horse: CEO stock gift and stock price crash risk. Br. Account. Rev. 2023, 56, 101235. [Google Scholar] [CrossRef]
- Li, D.; Xing, L.; Zhao, Y. Does extended auditor disclosure deter managerial bad-news hoarding? Evidence from crash risk. J. Corp. Financ. 2022, 76, 102256. [Google Scholar] [CrossRef]
- Boubaker, S.; Mansali, H.; Rjiba, H. Large controlling shareholders and stock price synchronicity. J. Bank. Financ. 2014, 40, 80–96. [Google Scholar] [CrossRef]
- Baker, M.; Stein, J.C. Market liquidity as a sentiment indicator. J. Financ. Mark. 2004, 7, 271–299. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, L. Unleashing the crowd: The effect of social networks in crowdfunding markets. Manag. Sci. 2024. [Google Scholar] [CrossRef]
- Duan, J.; Lin, J. The impact of COVID-19 on the crash risk of registered new shares in China. Pac. Basin Financ. J. 2023, 79, 102037. [Google Scholar] [CrossRef]
- Zhang, P.; Yin, S.; Sha, Y. Global systemic risk dynamic network connectedness during the COVID-19: Evidence from nonlinear Granger causality. J. Int. Financ. Mark. Inst. Money 2023, 85, 101783. [Google Scholar] [CrossRef]
- Broock, W.A.; Scheinkman, J.A.; Dechert, W.D.; LeBaron, B. A test for independence based on the correlation dimension. Econ. Rev. 1996, 15, 197–235. [Google Scholar] [CrossRef]
- Diks, C.; Panchenko, V. A new statistic and practical guidelines for nonparametric Granger causality testing. J. Econ. Dyn. Control 2006, 30, 1647–1669. [Google Scholar]
- Yu, J.W.; Xie, W.J.; Jiang, Z.Q. Early warning model based on correlated networks in global crude oil markets. Phys. A Stat. Mech. Its Appl. 2018, 490, 1335–1343. [Google Scholar]
- Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [Google Scholar]
- Callen, J.L.; Fang, X. Institutional investor stability and crash risk: Monitoring versus short-termism? J. Bank. Financ. 2013, 37, 3047–3063. [Google Scholar]
- Kim, Y.; Li, H.; Li, S. Corporate social responsibility and stock price crash risk. J. Bank. Financ. 2014, 43, 1–13. [Google Scholar]
- Huynh, T.L.D.; Foglia, M.; Nasir, M.A.; Angelini, E. Feverish sentiment and global equity markets during the COVID-19 pandemic. J. Econ. Behav. Organ. 2021, 188, 1088–1108. [Google Scholar] [CrossRef]
- Wang, W.; Su, C.; Duxbury, D. The conditional impact of investor sentiment in global stock markets: A two-channel examination. J. Bank. Financ. 2022, 138, 106458. [Google Scholar]
- Cardellichio, P.A. Estimation of production behavior using pooled microdata. Rev. Econ. Stat. 1990, 72, 11–18. [Google Scholar]
- Owusu-Gyapong, A. Alternative estimating techniques for panel data on strike activity. Rev. Econ. Stat. 1986, 228, 526–531. [Google Scholar]
- Bergman, N.K.; Roychowdhury, S. Investor sentiment and corporate disclosure. J. Account. Res. 2008, 46, 1057–1083. [Google Scholar] [CrossRef]
- Hao, J.; Xiong, X. Retail investor attention and firms’ idiosyncratic risk: Evidence from China. Int. Rev. Financ. Anal. 2021, 74, 101675. [Google Scholar]
- Bustamante, M.C.; Frésard, L. Does firm investment respond to peers’ investment? Manag. Sci. 2021, 67, 4703–4724. [Google Scholar]
- Chen, Y.-W.; Chan, K.; Chang, Y. Peer effects on corporate cash holdings. Int. Rev. Econ. Financ. 2019, 61, 213–227. [Google Scholar]
- Mugerman; Yevgeny; Orly, S.; Moses, S. Long term savings decisions: Financial reform, peer effects and ethnicity. J. Econ. Behav. Organ. 2014, 106, 235–253. [Google Scholar] [CrossRef]
- Kaustia, M.; Rantala, V. Social learning and corporate peer effects. J. Financ. Econ. 2015, 117, 653–669. [Google Scholar]
- Ben, A.I.; Slaheddine, H. High-frequency trading, stock volatility, and intraday crashes. Q. Rev. Econ. Financ. 2022, 84, 337–344. [Google Scholar]
- Cai, Y.; Tang, Z.; Chen, Y. Can real-time investor sentiment help predict the high-frequency stock returns? Evidence from a mixed-frequency-rolling decomposition forecasting method. N. Am. J. Econ. Financ. 2024, 72, 102147. [Google Scholar]
- Zhang, F. High-Frequency Trading, Stock Volatility, and Price Discovery. 2010. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1691679 (accessed on 10 February 2025).
- Jarrow, A.R.; Protter, P. A dysfunctional role of high frequency trading in electronic markets. Int. J. Theor. Appl. Financ. 2012, 15, 1250022. [Google Scholar] [CrossRef]
- Palomino, F.; Renneboog, L.; Zhang, C. Information salience, investor sentiment, and stock returns: The case of British soccer betting. J. Corp. Financ. 2009, 185, 368–387. [Google Scholar]
- Mathijs, C.; Rik, F. Salience theory and stock prices: Empirical evidence. J. Financ. Econ. 2021, 140, 460–483. [Google Scholar]
- Khan, M.; Watts, R.L. Estimation and empirical properties of a firm-year measure of accounting conservatism. J. Account. Econ. 2009, 48, 132–150. [Google Scholar] [CrossRef]
- Kim, J.B.; Wang, Z.; Zhang, L. CEO overconfidence and stock price crash risk. Contemp. Account. Res. 2016, 33, 1720–1749. [Google Scholar]
- Shleifer, A.; Vishny, R.W. Large shareholders and corporate control. J. Political Econ. 1986, 94 Pt 1, 461–488. [Google Scholar]
- Li, Y.; Li, X.; Xiang, E.; Djajadikerta, H.G. Financial distress, internal control, and earnings management: Evidence from China. J. Contemp. Account. Econ. 2020, 16, 100210. [Google Scholar] [CrossRef]
- Zang, A.Y. Evidence on the trade-off between real activities manipulation and accrual-based earnings management. Account. Rev. 2012, 87, 675–703. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.S.; Wang, X. Trust and stock price crash risk: Evidence from China. J. Bank. Financ. 2017, 76, 74–91. [Google Scholar]
- Edmans, A.; Garcia, D.; Norli, Ø. Sports sentiment and stock returns. J. Financ. 2007, 62, 1967–1998. [Google Scholar]
- Abudy, M.M.; Mugerman, Y.; Shust, E. The winner Takes it all: Investor sentiment and the Eurovision Song Contest. J. Bank. Financ. 2022, 137, 106432. [Google Scholar]
- Cookson, J.A.; Lu, R.; Mullins, W.; Niessner, M. The social signal. J. Financ. Econ. 2024, 158, 103870. [Google Scholar] [CrossRef]
- Morck, R.; Yeung, B.; Yu, W. The information content of stock markets: Why do emerging markets have synchronous stock price movements? J. Financ. Econ. 2000, 58, 215–260. [Google Scholar]
- Altman, E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Financ. 1968, 23, 589–609. [Google Scholar]
- Bugeja, M.; Czernkowski, R.; Moran, D. The impact of the management approach on segment reporting. J. Bus. Financ. Account. 2015, 42, 310–366. [Google Scholar]
- Chan, K.; Hameed, A. Stock price synchronicity and analyst coverage in emerging markets. J. Financ. Econ. 2006, 80, 115–147. [Google Scholar]
Variable | Mean | Median | Std.Dev | 25% | 75% |
---|---|---|---|---|---|
Turnover | 0.9509 | 0.6812 | 1.2750 | 0.4537 | 1.0668 |
FirmSentix | 0.3488 | 0.3448 | 0.0518 | 0.3139 | 0.3815 |
NCSKEW | 0.5845 | 0.3264 | 1.4818 | −0.2292 | 1.0159 |
DUVOL | 0.3730 | 0.2500 | 1.0784 | −0.2560 | 0.8145 |
SYNC | 0.9430 | 0.7374 | 1.4826 | 0.1605 | 1.3944 |
Opaque | 0.0852 | 0.0690 | 0.0640 | 0.0396 | 0.1125 |
Cscore | 0.1024 | 0.0598 | 0.5051 | −0.0251 | 0.1407 |
DTRUN | −0.0175 | −0.2066 | 9.8562 | −2.9545 | 2.6064 |
ROE | 25.9194 | 14.6409 | 887.9436 | 8.7548 | 24.1418 |
LEV | 0.6290 | 0.6195 | 0.2739 | 0.4758 | 0.7622 |
SIZE | 23.4522 | 23.4596 | 1.9902 | 22.4874 | 24.4137 |
MB | 0.3072 | 0.0053 | 1.3380 | −0.3439 | 0.7442 |
HFT | 21.7037 | 7.5198 | 20.9112 | 6.6078 | 39.5887 |
Variable | Column (1) | Column (2) | Column (3) | Column (4) |
---|---|---|---|---|
1.2895 *** (2.82) | 0.5287 * (1.82) | |||
0.0031 (1.39) | 0.0032 (1.41) | 0.0025 (1.62) | 0.0025 (1.63) | |
1.08 × 10−5 (1.33) | 1.21 × 10−5 (1.53) | 9.46 × 10−6 *** (2.72) | 9.98 × 10−6 *** (2.88) | |
−0.3556 *** (−26.93) | −0.3547 *** (−26.83) | −0.3461 *** (−32.36) | −0.3458 *** (−32.30) | |
0.1128 (0.72) | 0.1107 (0.72) | 0.1021 (0.92) | 0.1013 (0.93) | |
0.0350 (1.18) | 0.0328 (1.11) | 0.0233 (1.25) | 0.0224 (1.20) | |
0.6218 (1.28) | 0.6249 (1.27) | 0.3279 (1.00) | 0.3393 (1.00) | |
−0.1096 *** (−8.66) | −0.1073 *** (−8.58) | |||
−0.1173 *** (−11.04) | −0.1167 *** (−10.99) | |||
0.0173 (0.02) | −0.3993 (−0.56) | −0.1391 (−0.30) | −0.9980 (−0.80) | |
Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | |
F | 145.92 | 141.38 | 161.73 | 153.33 |
0.242 | 0.243 | 0.295 | 0.298 | |
5564 | 5564 | 5564 | 5564 |
Variable | Column (1) | Column (2) |
---|---|---|
29.8850 *** | ||
(10.28) | ||
−0.0970 *** | ||
(−7.91) | ||
0.0021 ** | ||
(2.35) | ||
1.1341 *** | ||
(7.79) | ||
0.1348 ** | ||
(2.11) | ||
−0.0004 | 0.0105 *** | |
(−1.27) | (4.30) | |
−1.83 × 10−6 * | 6.54 × 10−5 *** | |
(−1.68) | (5.22) | |
−0.0013 | −0.3050 *** | |
(−1.27) | (−19.99) | |
−0.0018 | 0.0072 | |
(−0.20) | (0.04) | |
0.0013 | −0.0184 | |
(0.71) | (−0.62) | |
0.0057 | 0.5941 | |
(0.16) | (1.17) | |
Constant | −0.0600 | −10.9749 *** |
(−0.84) | (−9.48) | |
Yes | Yes | |
Yes | Yes | |
F | 30.74 | 109.82 |
0.085 | 0.161 | |
Obs. | 5936 | 5564 |
Panel A: First-stage propensity score matching | |
Variable | High sentiment connectedness |
0.0091 *** | |
(5.32) | |
−2.846 × 10−5 | |
(−1.14) | |
−0.1492 *** | |
(−10.97) | |
−0.0923 | |
(−1.47) | |
−0.0411 *** | |
(−3.73) | |
0.0344 | |
(0.13) | |
−0.0322 *** | |
(−2.78) | |
1.1358 *** | |
(4.35) | |
Yes | |
5564 | |
0.003 | |
Panel B: Sentiment connectedness and crash risk | |
6.8832 *** | |
(9.08) | |
Yes | |
2878 | |
0.155 |
Variable | Column (1) | Column (2) | Column (3) | Column (4) |
---|---|---|---|---|
0.0735 ** | ||||
(2.48) | ||||
0.0253 *** | ||||
(13.54) | ||||
23.4394 ** | ||||
(2.17) | ||||
0.0031 | 0.0030 | 0.0137 *** | 0.0030 ** | |
(1.39) | (1.32) | (3.94) | (2.32) | |
1.08 × 10−5 | 1.23 × 10−5 | 1.91 × 10−5 * | 1.20 × 10−5 | |
(1.33) | (1.49) | (1.76) | (1.46) | |
−0.3556 *** | −0.3546 *** | −0.3541 *** | −0.3547 *** | |
(−26.93) | (−26.86) | (−30.39) | (−26.86) | |
0.1128 | 0.1068 | 0.2083 | 0.1070 | |
(0.72) | (0.69) | (1.33) | (0.69) | |
0.0350 | 0.0351 | −0.0032 | 0.0319 | |
(1.18) | (1.17) | (−0.11) | (1.17) | |
0.6218 | 0.6153 | 0.8447 * | 0.6911 | |
(1.28) | (1.26) | (1.71) | (1.42) | |
−0.1096 *** | −0.1074 *** | −0.1043 *** | −0.1076 *** | |
(−8.66) | (−8.58) | (−7.99) | (−8.59) | |
Constant | 0.0173 | −0.0628 | 0.0258 | −1.0572 |
(0.02) | (−0.09) | (0.03) | (−1.49) | |
Firm FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Observations | 5564 | 5564 | 5564 | 5564 |
Adj. | 0.242 | 0.243 | 0.170 | 0.243 |
F-stat | 145.92 | 142.55 | 271.67 | 142.80 |
Variable | Column (1) | Column (2) |
---|---|---|
1.0501 ** | 1.3399 *** | |
(2.04) | (2.93) | |
0.7710 * | ||
(−1.95) | ||
2.4320 ** | ||
(2.30) | ||
0.0032 ** | 0.0040 ** | |
(2.41) | (2.37) | |
1.21 × 10−5 | 1.18 × 10−5 | |
(1.53) | (1.53) | |
−0.3547 *** | −0.2916 *** | |
(−26.83) | (−26.70) | |
0.1107 | 0.1168 | |
(0.72) | (0.70) | |
−0.0329 * | 0.0220 | |
(1.80) | (1.03) | |
−0.6241 * | −0.2012 ** | |
(1.82) | (1.76) | |
−1.1056 *** | −1.1056 *** | |
(−7.59) | (−7.59) | |
Constant | −0.395 | −1.408 |
(−0.56) | (−0.26) | |
Firm FE | Yes | Yes |
Year FE | Yes | Yes |
F-stat | 128.03 | 142.80 |
Adj. | 0.215 | 0.245 |
Obs. | 5564 | 5564 |
Variable | Group (1) Upsurge | Group (2) Downsurge | Group (3) Whole | |||
---|---|---|---|---|---|---|
1.6873 ** (2.55) | 1.3522 * (1.75) | 1.2895 *** (2.82) | ||||
−0.0044 (−0.08) | 0.0253 (−0.17) | −0.1064 ** (−2.47) | ||||
0.0042 (1.50) | 0.0042 (−1.65) | 0.0090 (1.13) | −0.0039 (−1.05) | 0.0032 (1.39) | 0.0012 (−0.46) | |
2.77 × 10−5 *** (4.44) | 2.53 × 10−5 *** (−3.8) | −0.0008 (−0.32) | 8.11 × 10−6 −0.74) | 1.21 × 10−5 (1.53) | 3.14 × 10−6 (0.27) | |
−0.4242 *** (−17.70) | −0.4253 *** (−17.69) | −0.3307 *** (−16.15) | −0.3251 *** (−20.49) | −0.3547 *** (−26.83) | −0.3559 *** (−26.94) | |
0.1311 (0.61) | 0.1215 (−0.56) | 0.5017 (1.35) | 0.0596 (−0.27) | 0.1107 (0.72) | 0.1241 (−0.8) | |
0.0513 (1.52) | 0.0526 (−1.57) | 0.1533 (1.61) | −0.0401 (−0.41) | 0.0328 (1.11) | 0.0282 (−0.94) | |
0.3163 (0.46) | 0.3162 (−0.46) | 1.5577 (1.47) | 1.0433 (−1.55) | 0.6249 (1.27) | 0.6331 (−1.29) | |
−0.0913 *** (−4.77) | −0.0924 *** (−4.78) | −0.1539 *** (−5.31) | −0.1203 *** (−7.47) | −0.1073 *** (−8.58) | −0.1073 *** (−8.50) | |
−0.8977 (−1.05) | −0.3054 (−0.37) | −4.1146 * (−1.86) | 1.6847 (−0.76) | −0.3993 *** (−0.56) | 0.2521 (−0.35) | |
Yes | Yes | Yes | Yes | Yes | Yes | |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
F | 65.67 | 69.02 | 35.74 | 96.33 | 141.38 | 146.01 |
0.232 | 0.4021 | 0.243 | 0.257 | 0.243 | 0.244 | |
Obs. | 2760 | 2760 | 2790 | 2790 | 5564 | 5564 |
Variable | Column (1) | Column (2) | Column (3) |
---|---|---|---|
1.1584 ** | 1.3399 *** | ||
(2.49) | (2.93) | ||
−0.1346 ** | |||
(−2.57) | |||
0.4429 ** | |||
(2.05) | |||
0.3603 * | |||
(1.80) | |||
−0.1777 * | |||
(−1.94) | |||
0.0031 | 0.0046 | 0.0064 ** | |
(1.38) | (1.60) | (2.33) | |
1.08 × 10−5 | 1.18 × 10−5 * | 7.45 × 10−6 | |
(1.33) | (2.00) | (1.11) | |
−0.3556 *** | −0.3426 *** | −0.3510 *** | |
(−26.93) | (−27.61) | (−26.61) | |
0.1128 | 0.2268 | 0.1268 | |
(0.72) | (1.49) | (0.81) | |
0.0350 | 0.1130 *** | 0.0922 ** | |
(1.18) | (2.70) | (2.33) | |
−0.1096 *** | −0.1036 *** | −0.1076 *** | |
(−8.66) | (−8.79) | (−8.46) | |
0.6218 | 0.7911 * | 0.7309 | |
(1.28) | (1.64) | (1.49) | |
0.0173 | −2.4345 ** | −1.8162 * | |
(0.02) | (−2.47) | (−1.93) | |
Firm FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
F-stat | 145.92 | 140.23 | 132.01 |
Adj. | 0.242 | 0.272 | 0.260 |
Obs. | 5564 | 5564 | 5564 |
Variable | Shareholding Concentration | Financial Condition | ||
---|---|---|---|---|
(1) High | (2) Low | (3) Non-Distressed | (4) Distress | |
3.7140 (1.57) | 1.1481 ** (2.46) | 1.4280 (1.64) | 1.2249 ** (2.25) | |
0.0014 (0.38) | 0.0098 *** (4.82) | 0.0036 (1.01) | 0.0064 * (1.93) | |
−0.0002 (−0.11) | 1.06 × 10−5 (1.34) | 3.96 × 10−5 (1.30) | 9.18 × 10−6 (1.16) | |
−0.4375 *** (−6.75) | −0.3497 *** (−26.03) | −0.4078 *** (−14.56) | −0.3416 *** (−23.59) | |
−0.9383 ** (−2.20) | 0.1748 (1.08) | 0.2227 (0.97) | 0.0371 (0.16) | |
0.7077 (1.54) | 0.0763 *** (2.64) | 0.1063 (0.80) | 0.0912 ** (2.20) | |
−0.8956 (−0.41) | 0.6353 (1.26) | 0.9240 (0.91) | 0.5222 (0.93) | |
−0.1807 *** (−3.15) | −0.1013 *** (−7.93) | −0.1582 *** (−7.03) | −0.0903 *** (−6.18) | |
4.7837 (0.93) | −1.490 ** (−2.08) | −2.3645 (−0.74) | −1.6573 (−1.69) | |
Yes | Yes | Yes | Yes | |
Yes | Yes | Yes | Yes | |
F | 168.90 | 144.95 | 138.91 | 115.72 |
0.217 | 0.211 | 0.211 | 0.246 | |
Obs. | 285 | 5265 | 1215 | 4335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; He, G.; Jiao, Y. Too Sensitive to Fail: The Impact of Sentiment Connectedness on Stock Price Crash Risk. Entropy 2025, 27, 345. https://doi.org/10.3390/e27040345
Cao J, He G, Jiao Y. Too Sensitive to Fail: The Impact of Sentiment Connectedness on Stock Price Crash Risk. Entropy. 2025; 27(4):345. https://doi.org/10.3390/e27040345
Chicago/Turabian StyleCao, Jie, Guoqing He, and Yaping Jiao. 2025. "Too Sensitive to Fail: The Impact of Sentiment Connectedness on Stock Price Crash Risk" Entropy 27, no. 4: 345. https://doi.org/10.3390/e27040345
APA StyleCao, J., He, G., & Jiao, Y. (2025). Too Sensitive to Fail: The Impact of Sentiment Connectedness on Stock Price Crash Risk. Entropy, 27(4), 345. https://doi.org/10.3390/e27040345