OMAL: A Multi-Label Active Learning Approach from Data Streams
Abstract
:1. Introduction
- A novel instance significance active query strategy, which simultaneously considers uncertainty and diversity, is proposed;
- To adapt both requirements of leveraging label correlations and treating class imbalance in multi-label learning, CC and WELM learning models are integrated into an online active learning framework;
- A novel multi-label online active learning algorithm, called OMAL, is proposed in this study, and to our best knowledge, it is the first algorithm that totally considers all requirements in this specific learning scenario.
2. Methods
2.1. The Basic Framework of Stream-Based Active Learning
2.2. Query Strategy of OMAL
2.3. Classification Models Used in OMAL
2.3.1. Classifier Chains
2.3.2. Weighted Extreme Learning Machine
2.4. Description of the OMAL Algorithm
Algorithm 1: OMAL |
Input: a null labeled set , an unlabeled multi-label data block stream , the significance level of query strategy regulation weight , the querying rate , the activation function G, the number of hidden nodes K, and the penalty factor C. |
Output: the current classification model S. |
Procedure: |
|
2.5. Time Complexity of the OMAL Algorithm
3. Results
3.1. Datasets Used in This Study
3.2. Experimental Settings
3.3. Experimental Results
- (1)
- When increasing the value of , i.e., actively querying more unlabeled instances, the various active learning algorithms tend to yield better classification performance;
- (2)
- When is designated as a small value, increasing it can provide a more significant performance improvement;
- (3)
- After designating a medium value for , continually increasing the value of can not significantly improve classification performance, and even on some datasets, the performance presents a declining trend.
- (1)
- In comparison to Random, several of the active learning algorithms except EMAL yielded higher ALC values in terms of both the Macro-F1 and Micro-F1 metrics, indicating that these algorithms can select more significant unlabeled instances to query and further help to improve the quality of a multi-label learning model to a large extent. As the worst querying strategy, EMAL only focuses those instances that are closest to the classification boundary, but it neglects the diversity of the data distribution, which tends to make the classification boundary converge to a local optimum one. This explains why EMAL performs worse than Random.
- (2)
- Although LCI acquired a higher average ranking than Random on both metrics, its superiority is not significant enough. In essence, LCI can be seen as an unconventional query strategy with partial exploration ability, as it always queries those unlabeled instances with a significant difference in terms of label cardinality with labeled instances. Therefore, we cannot prevent it from converging to a local optimum boundary rapidly, but its convergence speed is obviously slower than EMAL.
- (3)
- Both CVIRS and the proposed OMAL significantly outperform several of the other algorithms. It is difficult to understand this result since both these algorithms simultaneously focus on the significance of unlabeled instances in terms of both uncertainty and diversity. Therefore, we can say that CVIRS and OMAL both own exploitation and exploration abilities. More informative instances can be selected for querying by them.
- (4)
- In comparison to CVIRS, OMAL adopts a direct way of exploring diversity in the feature space, which helps to rapidly adapt the potential variance in the feature space in the data stream. In contrast, the exploration of diversity by observing the variance in the label vectors adopted by CVIRS may be not robust enough. In addition, the time consumption of CVIRS is always higher than that of OMAL, owing to the sophisticated ranking aggregation strategy adopted by CVIRS.
- (5)
- OMAL yielded the best ALC value based on the Macro-F1 metric on seven datasets and the best ALC value based on the Micro-F1 metric on eight datasets. In addition, OMAL acquired the lowest average ranking of 1.4 on both metrics. These results show its effectiveness and superiority in dealing with multi-label data stream active learning scenarios. We believe that on a static unlabeled set, where all instances are initially available, the continuously strong space exploration ability of OMAL may be not necessary. While on a dynamic data stream, it will contribute more to the performance improvement of the classification model.
3.4. Significance Analysis
3.5. Ablation Experiments
3.6. Results of Running Time
4. Conclusions
- It proposed a novel multi-label active query strategy that simultaneously satisfies the requirements of exploration and exploitation in online environments;
- It designed an effective multi-label online solution to simultaneously leverage label correlation information and adapt the class imbalance distribution;
- It introduced LD3 label correlation information into a CC model to avoid error accumulation;
- It presented a subtle multi-label online active learning algorithm that can produce excellent performance and, meanwhile, is relatively time-saving.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALC | area under learning curve |
CC | classifier chain |
CD | critical difference |
CVIRS | category vector inconsistency and ranking of scores |
ELM | extreme learning machine |
EMAL | example-based active learning |
KNN | K-nearest neighbors |
LC | label cardinality |
LCI | label cardinality inconsistency |
LD3 | label dependency drift detector |
OMAL | online multi-label active learning |
WELM | weighted extreme learning machine |
References
- Amin, S.U.; Hussain, A.; Kim, B.; Seo, S. Deep learning based active learning technique for data annotation and improve the overall performance of classification models. Expert Syst. Appl. 2023, 228, 120391. [Google Scholar]
- Zhang, L.; Chen, C.; Bu, J.; Cai, D.; He, X.; Huang, T.S. Active learning based on locally linear reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2026–2038. [Google Scholar] [CrossRef]
- Guo, H.; Wang, W. An active learning-based SVM multi-class classification model. Pattern Recognit. 2015, 48, 1577–1597. [Google Scholar]
- Goudjil, M.; Koudil, M.; Bedda, M.; Ghoggali, N. A novel active learning method using SVM for text classification. Int. J. Autom. Comput. 2018, 15, 290–298. [Google Scholar]
- Cebron, N.; Berthold, M.R. Active learning for object classification: From exploration to exploitation. Data Min. Knowl. Discov. 2009, 18, 283–299. [Google Scholar]
- Sourati, J.; Akcakaya, M.; Dy, J.G.; Leen, T.K.; Erdogmus, D. Classification active learning based on mutual information. Entropy 2016, 18, 51. [Google Scholar] [CrossRef]
- Karaca, A.C.; Bilgin, G. An end-to-end active learning framework for limited labelled hyperspectral image classification. Int. J. Remote Sens. 2025, 1–28. [Google Scholar] [CrossRef]
- Shen, X.; Dong, G.; Zheng, Y.; Lan, L.; Tsang, I.W.; Sun, Q.S. Deep co-image-label hashing for multi-label image retrieval. IEEE Trans. Multimed. 2021, 24, 1116–1126. [Google Scholar] [CrossRef]
- Bogaert, M.; Lootens, J.; Van den Poel, D.; Ballings, M. Evaluating multi-label classifiers and recommender systems in the financial service sector. Eur. J. Oper. Res. 2019, 279, 620–634. [Google Scholar]
- Laghmari, K.; Marsala, C.; Ramdani, M. An adapted incremental graded multi-label classification model for recommendation systems. Prog. Artif. Intell. 2018, 7, 15–29. [Google Scholar]
- Wang, R.; Ridley, R.; Qu, W.; Dai, X. A novel reasoning mechanism for multi-label text classification. Inf. Process. Manag. 2021, 58, 102441. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, X.; Yang, D.; Wang, Y.; Bai, X.; Ye, X. Application of multi-label classification models for the diagnosis of diabetic complications. BMC Med. Inform. Decis. Mak. 2021, 21, 182. [Google Scholar] [CrossRef] [PubMed]
- Sonkul, N.A.; Dhage, G.S.; Vyas, N.S. Single and multi-label fault classification in rotors from unprocessed multi-sensor data through deep and parallel CNN architectures. Expert Syst. Appl. 2021, 185, 115565. [Google Scholar] [CrossRef]
- Jethanandani, M.; Sharma, A.; Perumal, T.; Chang, J.R. Multi-label classification based ensemble learning for human activity recognition in smart home. Internet Things 2020, 12, 100324. [Google Scholar] [CrossRef]
- Wu, J.; Sheng, V.S.; Zhang, J.; Li, H.; Dadakova, T.; Swisher, C.L.; Cui, Z.; Zhao, P. Multi-label active learning algorithms for image classification: Overview and future promise. ACM Comput. Surv. (CSUR) 2020, 53, 1–35. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Shaker, M.H.; Hüllermeier, E. How to measure uncertainty in uncertainty sampling for active learning. Mach. Learn. 2022, 111, 89–122. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.Z.; Kwong, S.; Xu, C. Incorporating diversity and informativeness in multiple-instance active learning. IEEE Trans. Fuzzy Syst. 2017, 25, 1460–1475. [Google Scholar] [CrossRef]
- Wu, J.; Sheng, V.S.; Zhang, J.; Zhao, P.; Cui, Z. Multi-label active learning for image classification. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5227–5231. [Google Scholar]
- Li, X.; Guo, Y. Active Learning with Multi-Label SVM Classification. Int. Jt. Conf. Artif. Intell. (IJCAI) 2013, 13, 1479–1485. [Google Scholar]
- Reyes, O.; Morell, C.; Ventura, S. Effective active learning strategy for multi-label learning. Neurocomputing 2018, 273, 494–508. [Google Scholar] [CrossRef]
- Song, Y.; Lu, J.; Lu, H.; Zhang, G. Learning data streams with changing distributions and temporal dependency. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 3952–3965. [Google Scholar] [CrossRef]
- Gaudreault, J.G.; Branco, P. A systematic literature review of novelty detection in data streams: Challenges and opportunities. ACM Comput. Surv. 2024, 56, 1–37. [Google Scholar] [CrossRef]
- Buddhika, T.; Pallickara, S.L.; Pallickara, S. Pebbles: Leveraging sketches for processing voluminous, high velocity data streams. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2005–2020. [Google Scholar] [CrossRef]
- Bahri, M.; Bifet, A.; Gama, J.; Gomes, H.M.; Maniu, S. Data stream analysis: Foundations, major tasks and tools. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1405. [Google Scholar] [CrossRef]
- Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under concept drift: A review. IEEE Trans. Knowl. Data Eng. 2018, 31, 2346–2363. [Google Scholar] [CrossRef]
- Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 2014, 46, 1–37. [Google Scholar] [CrossRef]
- Webb, G.I.; Hyde, R.; Cao, H.; Nguyen, H.L.; Petitjean, F. Characterizing concept drift. Data Min. Knowl. Discov. 2016, 30, 964–994. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, P.; Guo, L. Mining multi-label data streams using ensemble-based active learning. In Proceedings of the 2012 SIAM International Conference on Data Mining, Anaheim, CA, USA, 26–28 April 2012; pp. 1131–1140. [Google Scholar]
- Zhu, Y.; Kwok, J.T.; Zhou, Z.H. Multi-label learning with global and local label correlation. IEEE Trans. Knowl. Data Eng. 2017, 30, 1081–1094. [Google Scholar] [CrossRef]
- Duan, J.; Yang, X.; Gao, S.; Yu, H. A partition-based problem transformation algorithm for classifying imbalanced multi-label data. Eng. Appl. Artif. Intell. 2024, 128, 107506. [Google Scholar] [CrossRef]
- Duan, J.; Gu, Y.; Yu, H.; Yang, X.; Gao, S. ECC++: An algorithm family based on ensemble of classifier chains for classifying imbalanced multi-label data. Expert Syst. Appl. 2024, 236, 121366. [Google Scholar] [CrossRef]
- Zhang, M.L.; Li, Y.K.; Yang, H.; Liu, X.Y. Towards class-imbalance aware multi-label learning. IEEE Trans. Cybern. 2020, 52, 4459–4471. [Google Scholar] [CrossRef]
- Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains for multi-label classification. Mach. Learn. 2011, 85, 333–359. [Google Scholar]
- Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains: A review and perspectives. J. Artif. Intell. Res. 2021, 70, 683–718. [Google Scholar]
- Zong, W.; Huang, G.B.; Chen, Y. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101, 229–242. [Google Scholar]
- Yu, H.; Sun, C.; Yang, W.; Yang, X.; Zuo, X. AL-ELM: One uncertainty-based active learning algorithm using extreme learning machine. Neurocomputing 2015, 166, 140–150. [Google Scholar]
- Gonçalves, E.C.; Plastino, A.; Freitas, A.A. A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In Proceedings of the 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, Herndon, VA, USA, 4–6 November 2013; pp. 469–476. [Google Scholar]
- Mishra, N.K.; Singh, P.K. Linear ordering problem based classifier chain using genetic algorithm for multi-label classification. Appl. Soft Comput. 2022, 117, 108395. [Google Scholar]
- Gulcan, E.B.; Can, F. Unsupervised concept drift detection for multi-label data streams. Artif. Intell. Rev. 2023, 56, 2401–2434. [Google Scholar]
- Soltanzadeh, P.; Hashemzadeh, M. RCSMOTE: Range-Controlled synthetic minority over-sampling technique for handling the class imbalance problem. Inf. Sci. 2021, 542, 92–111. [Google Scholar]
- Yu, H.; Sun, C.; Yang, X.; Yang, W.; Shen, J.; Qi, Y. ODOC-ELM: Optimal decision outputs compensation-based extreme learning machine for classifying imbalanced data. Knowl.-Based Syst. 2016, 92, 55–70. [Google Scholar]
- Khan, A.A.; Chaudhari, O.; Chandra, R. A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Syst. Appl. 2024, 244, 122778. [Google Scholar]
- Abedin, M.Z.; Guotai, C.; Hajek, P.; Zhang, T. Combining weighted SMOTE with ensemble learning for the class-imbalanced prediction of small business credit risk. Complex Intell. Syst. 2023, 9, 3559–3579. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015, 61, 32–48. [Google Scholar] [CrossRef]
- Feng, B.; Gu, Y.; Yu, H.; Yang, X.; Gao, S. DME: An adaptive and just-in-time weighted ensemble learning method for classifying block-based concept drift steam. IEEE Access 2022, 10, 120578–120591. [Google Scholar] [CrossRef]
- Yu, H.; Sun, C.; Yang, X.; Zheng, S.; Wang, Q.; Xi, X. LW-ELM: A fast and flexible cost-sensitive learning framework for classifying imbalanced data. IEEE Access 2018, 6, 28488–28500. [Google Scholar] [CrossRef]
- Cheng, K.; Gao, S.; Dong, W.; Yang, X.; Wang, Q.; Yu, H. Boosting label weighted extreme learning machine for classifying multi-label imbalanced data. Neurocomputing 2020, 403, 360–370. [Google Scholar] [CrossRef]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064. [Google Scholar] [CrossRef]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
Dataset | Domain | #Instances | #Features | #Labels | LC | Block Size |
---|---|---|---|---|---|---|
Flags | Image | 194 | 19 | 7 | 3.392 | 20 |
CHD_49 | Medicine | 555 | 49 | 6 | 2.580 | 50 |
Emotions | Music | 593 | 72 | 6 | 1.868 | 50 |
Medical | Text | 978 | 1449 | 45 | 1.245 | 100 |
Water quality | Chemistry | 1060 | 16 | 14 | 5.073 | 100 |
Image | Image | 2000 | 294 | 5 | 1.236 | 200 |
Scene | Image | 2407 | 294 | 6 | 1.074 | 200 |
Yeast | Biology | 2417 | 103 | 14 | 4.237 | 200 |
EukaryotePseAAC | Biology | 7766 | 440 | 22 | 1.146 | 500 |
Yelp | Text | 10,810 | 671 | 5 | 1.638 | 800 |
Dataset | Random | EMAL | LCI | CVIRS | OMAL |
---|---|---|---|---|---|
Flags | 0.5751 ± 0.0159 | 0.5762 ± 0.0064 | 0.5856 ± 0.0061 | 0.5663 ± 0.0089 | 0.5774 ± 0.0120 |
CHD_49 | 0.4346 ± 0.0067 | 0.4176 ± 0.0092 | 0.4447 ± 0.0065 | 0.4349 ± 0.0066 | 0.4503 ± 0.0040 |
Emotions | 0.5732 ± 0.0100 | 0.5729 ± 0.0061 | 0.5642 ± 0.0070 | 0.5771 ± 0.0106 | 0.5841 ± 0.0067 |
Medical | 0.2661 ± 0.0076 | 0.2449 ± 0.0054 | 0.2315 ± 0.0078 | 0.2875 ± 0.0030 | 0.2865 ± 0.0031 |
Water-quality | 0.5497 ± 0.0023 | 0.5365 ± 0.0015 | 0.5426 ± 0.0026 | 0.5408 ± 0.0024 | 0.5504 ± 0.0025 |
Image | 0.5636 ± 0.0059 | 0.5649 ± 0.0070 | 0.5648 ± 0.0042 | 0.5678 ± 0.0051 | 0.5708 ± 0.0032 |
Scene | 0.6832 ± 0.0037 | 0.6738 ± 0.0033 | 0.6782 ± 0.0058 | 0.6876 ± 0.0031 | 0.6940 ± 0.0034 |
Yeast | 0.4318 ± 0.0051 | 0.4247 ± 0.0033 | 0.4309 ± 0.0043 | 0.4321 ± 0.0024 | 0.4397 ± 0.0027 |
EukaryotePseAAC | 0.1189 ± 0.0025 | 0.1143 ± 0.0008 | 0.1153 ± 0.0005 | 0.1167 ± 0.0018 | 0.1193 ± 0.0013 |
Yelp | 0.4716 ± 0.0025 | 0.4722 ± 0.0041 | 0.4796 ± 0.0021 | 0.4771 ± 0.0021 | 0.4726 ± 0.0013 |
Average ranking | 3.4 | 4.3 | 3.3 | 2.6 | 1.4 |
Dataset | Random | EMAL | LCI | CVIRS | OMAL |
---|---|---|---|---|---|
Flags | 0.6414 ± 0.0103 | 0.6413 ± 0.0058 | 0.6507 ± 0.0054 | 0.6341 ± 0.0071 | 0.6561 ± 0.0041 |
CHD_49 | 0.5493 ± 0.0076 | 0.5337 ± 0.0110 | 0.5630 ± 0.0069 | 0.5453 ± 0.0078 | 0.5704 ± 0.0041 |
Emotions | 0.5752 ± 0.0104 | 0.5759 ± 0.0057 | 0.5718 ± 0.0072 | 0.5819 ± 0.0105 | 0.5866 ± 0.0061 |
Medical | 0.7501 ± 0.0061 | 0.7336 ± 0.0034 | 0.7230 ± 0.0077 | 0.7587 ± 0.0041 | 0.7602 ± 0.0022 |
Water quality | 0.5666 ± 0.0021 | 0.5527 ± 0.0012 | 0.5577 ± 0.0021 | 0.5551 ± 0.0019 | 0.5727 ± 0.0022 |
Image | 0.5625 ± 0.0058 | 0.5635 ± 0.0065 | 0.5633 ± 0.0046 | 0.5683 ± 0.0046 | 0.5695 ± 0.0033 |
Scene | 0.6644 ± 0.0038 | 0.6586 ± 0.0032 | 0.6649 ± 0.0060 | 0.6684 ± 0.0033 | 0.6735 ± 0.0036 |
Yeast | 0.5577 ± 0.0053 | 0.5541 ± 0.0023 | 0.5683 ± 0.0022 | 0.5588 ± 0.0026 | 0.5619 ± 0.0031 |
EukaryotePseAAC | 0.3442 ± 0.0087 | 0.3464 ± 0.0014 | 0.3471 ± 0.0042 | 0.3631 ± 0.0034 | 0.3663 ± 0.0029 |
Yelp | 0.4861 ± 0.0026 | 0.4896 ± 0.0036 | 0.4955 ± 0.0021 | 0.4929 ± 0.0013 | 0.4881 ± 0.0010 |
Average ranking | 3.8 | 4.1 | 2.9 | 2.8 | 1.4 |
Dataset | Macro-F1 | Micro-F1 | ||||
---|---|---|---|---|---|---|
Uncertainty | Diversity | Both | Uncertainty | Diversity | Both | |
Flags | 0.5519 ± 0.0113 | 0.5762 ± 0.0047 | 0.5774 ± 0.0012 | 0.6397 ± 0.0060 | 0.6445 ± 0.0023 | 0.6561 ± 0.0041 |
CHD_49 | 0.4494 ± 0.0044 | 0.4448 ± 0.0040 | 0.4503 ± 0.0040 | 0.5678 ± 0.0061 | 0.5601 ± 0.0039 | 0.5704 ± 0.0041 |
Emotions | 0.5888 ± 0.0073 | 0.5808 ± 0.0056 | 0.5841 ± 0.0067 | 0.5927 ± 0.0074 | 0.5834 ± 0.0053 | 0.5866 ± 0.0061 |
Medical | 0.2852 ± 0.0045 | 0.2777 ± 0.0024 | 0.2865 ± 0.0031 | 0.7591 ± 0.0043 | 0.7511 ± 0.0029 | 0.7602 ± 0.0022 |
Water quality | 0.5557 ± 0.0016 | 0.5399 ± 0.0015 | 0.5504 ± 0.0025 | 0.5772 ± 0.0011 | 0.5581 ± 0.001 | 0.5727 ± 0.0022 |
Image | 0.5642 ± 0.0046 | 0.5656 ± 0.0045 | 0.5708 ± 0.0032 | 0.5629 ± 0.0041 | 0.5643 ± 0.0046 | 0.5695 ± 0.0033 |
Scene | 0.6922 ± 0.0031 | 0.6786 ± 0.0027 | 0.6940 ± 0.0034 | 0.6731 ± 0.0029 | 0.6582 ± 0.003 | 0.6735 ± 0.0036 |
Yeast | 0.4351 ± 0.0029 | 0.4350 ± 0.0013 | 0.4397 ± 0.0027 | 0.5585 ± 0.0021 | 0.5497 ± 0.0009 | 0.5619 ± 0.0031 |
EukaryotePseAAC | 0.1276 ± 0.0014 | 0.1124 ± 0.0008 | 0.1193 ± 0.0013 | 0.3461 ± 0.0021 | 0.3642 ± 0.0012 | 0.3663 ± 0.0029 |
Yelp | 0.4678 ± 0.0013 | 0.4718 ± 0.0014 | 0.4726 ± 0.0013 | 0.4838 ± 0.0013 | 0.4866 ± 0.0020 | 0.4881 ± 0.0010 |
Dataset | Macro-F1 | Micro-F1 | ||
---|---|---|---|---|
ELM | WELM | ELM | WELM | |
Flags | 0.5766 ± 0.0159 | 0.5774 ± 0.0012 | 0.6682 ± 0.0118 | 0.6561 ± 0.0041 |
CHD_49 | 0.4454 ± 0.0058 | 0.4503 ± 0.0040 | 0.5855 ± 0.0074 | 0.5704 ± 0.0041 |
Emotions | 0.5742 ± 0.0079 | 0.5841 ± 0.0067 | 0.5765 ± 0.0081 | 0.5866 ± 0.0061 |
Medical | 0.2805 ± 0.0052 | 0.2865 ± 0.0031 | 0.7194 ± 0.0055 | 0.7602 ± 0.0022 |
Water quality | 0.4822 ± 0.0097 | 0.5504 ± 0.0025 | 0.5415 ± 0.0057 | 0.5727 ± 0.0022 |
Image | 0.4461 ± 0.0060 | 0.5708 ± 0.0032 | 0.4498 ± 0.0059 | 0.5695 ± 0.0033 |
Scene | 0.5965 ± 0.0036 | 0.6940 ± 0.0034 | 0.5769 ± 0.0041 | 0.6735 ± 0.0036 |
Yeast | 0.4023 ± 0.0031 | 0.4397 ± 0.0027 | 0.5601 ± 0.0040 | 0.5619 ± 0.0031 |
EukaryotePseAAC | 0.0877 ± 0.0031 | 0.1193 ± 0.0013 | 0.2735 ± 0.0016 | 0.3663 ± 0.0029 |
Yelp | 0.4771 ± 0.0037 | 0.4726 ± 0.0013 | 0.4871 ± 0.0034 | 0.4881 ± 0.0010 |
Dataset | Macro-F1 | Micro-F1 | ||
---|---|---|---|---|
Random | LD3 | Random | LD3 | |
Flags | 0.5764 ± 0.0077 | 0.5774 ± 0.0012 | 0.6553 ± 0.0071 | 0.6561 ± 0.0041 |
CHD_49 | 0.4526 ± 0.0046 | 0.4503 ± 0.0040 | 0.5692 ± 0.0085 | 0.5704 ± 0.0041 |
Emotions | 0.5791 ± 0.0093 | 0.5841 ± 0.0067 | 0.5802 ± 0.0121 | 0.5866 ± 0.0061 |
Medical | 0.2809 ± 0.0027 | 0.2865 ± 0.0031 | 0.7547 ± 0.0041 | 0.7602 ± 0.0022 |
Water quality | 0.5487 ± 0.0077 | 0.5504 ± 0.0025 | 0.5782 ± 0.0054 | 0.5727 ± 0.0022 |
Image | 0.5671 ± 0.0060 | 0.5708 ± 0.0032 | 0.5662 ± 0.0053 | 0.5695 ± 0.0033 |
Scene | 0.6916 ± 0.0033 | 0.6940 ± 0.0034 | 0.6748 ± 0.0039 | 0.6735 ± 0.0036 |
Yeast | 0.4386 ± 0.0060 | 0.4397 ± 0.0027 | 0.5562 ± 0.0179 | 0.5619 ± 0.0031 |
EukaryotePseAAC | 0.1132 ± 0.0051 | 0.1193 ± 0.0013 | 0.2855 ± 0.0319 | 0.3663 ± 0.0029 |
Yelp | 0.4712 ± 0.0029 | 0.4726 ± 0.0013 | 0.4841 ± 0.0042 | 0.4881 ± 0.0010 |
Dataset | Random | EMAL | LCI | CVIRS | OMAL |
---|---|---|---|---|---|
Flags | 0.0409 | 0.0464 | 0.0483 | 0.3152 | 0.0443 |
CHD_49 | 0.1646 | 0.1758 | 0.1665 | 2.2945 | 0.1687 |
Emotions | 0.4059 | 0.4260 | 0.4271 | 2.7905 | 0.4117 |
Medical | 8.0610 | 8.3567 | 8.1836 | 14.7187 | 8.4605 |
Water quality | 0.6095 | 0.6342 | 0.7039 | 8.2412 | 0.6541 |
Image | 1.0262 | 1.0604 | 1.1134 | 26.6437 | 1.1383 |
Scene | 3.2678 | 3.5351 | 3.5442 | 40.3567 | 3.5444 |
Yeast | 8.4641 | 8.8564 | 8.7347 | 46.9647 | 9.1096 |
EukaryotePseAAC | 109.7874 | 110.9367 | 111.7936 | 483.9314 | 109.8256 |
Yelp | 34.0957 | 34.7724 | 34.1290 | 780.7408 | 35.3902 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Q.; Xiang, C.; Duan, J.; Soufiyan, B.; Shao, C.; Yang, X.; Xu, S.; Yu, H. OMAL: A Multi-Label Active Learning Approach from Data Streams. Entropy 2025, 27, 363. https://doi.org/10.3390/e27040363
Fang Q, Xiang C, Duan J, Soufiyan B, Shao C, Yang X, Xu S, Yu H. OMAL: A Multi-Label Active Learning Approach from Data Streams. Entropy. 2025; 27(4):363. https://doi.org/10.3390/e27040363
Chicago/Turabian StyleFang, Qiao, Chen Xiang, Jicong Duan, Benallal Soufiyan, Changbin Shao, Xibei Yang, Sen Xu, and Hualong Yu. 2025. "OMAL: A Multi-Label Active Learning Approach from Data Streams" Entropy 27, no. 4: 363. https://doi.org/10.3390/e27040363
APA StyleFang, Q., Xiang, C., Duan, J., Soufiyan, B., Shao, C., Yang, X., Xu, S., & Yu, H. (2025). OMAL: A Multi-Label Active Learning Approach from Data Streams. Entropy, 27(4), 363. https://doi.org/10.3390/e27040363