Brown and Levy Steady-State Motions
Abstract
1. Introduction
- ▶
- The SSMs can jointly display the Noah and Joseph effects.
- ▶
- The SSMs’ correlation and memory structures are tunable.
- ▶
- The SSMs are Markov and their dynamics are Langevin.
2. Preliminaries
2.1. SLS Distribution
2.2. SLS Process
2.3. Spatio-Temporal Transformation
3. Output Increments
3.1. Signal-to-Noise Ratio
3.2. Noise-to-Noise Ratio
3.3. Variance-to-Variance Ratio
3.4. Conclusion
- ▶
- The signal-to-noise ratio of Equation (7).
- ▶
- The noise-to-noise ratio of Equation (9).
- ▶
- The variance-to-variance ratio of Equation (11).
4. Correlations
4.1. BM Input
4.2. LM Input
4.3. Poissonian Correlations
4.4. Conclusions
- ▶
- ▶
- The survival probability of Equation (16).
- ▶
5. Steady-State Motions
5.1. Steady State
- Extended-variance characterization: .
- Amplitude-clock characterization: .
- Ratios characterization: .
- Levy characterization: .
- As the clock is monotone increasing: the amplitude is monotone decreasing.
- The SNR and NNR/VVR are inversely related: the larger the SNR—the smaller the NNR/VVR; the smaller the SNR—the larger the NNR/VVR.
- In the BM-input case, the correlations of Section 4.1 are coupled by the relation .
- In the LM-input case, the correlations of Section 4.3 are coupled by the relation .
5.2. Quantitative Analysis
5.3. Special Cases
6. Steady-State Insights
6.1. Prediction
- ▶
- Increasing shape: the larger the lag —the smaller the quantity.
- ▶
- Decreasing shape: the larger the lag —the larger the quantity.
- ▶
- Flat shape: the quantity is invariant with respect to the lag .
- ▶
- SNR: monotone decreasing from to .
- ▶
- NNR: monotone increasing from to .
- ▶
- VVR: monotone increasing from to .
6.2. Asymptotic Behaviors
- ▶
- The long-lag limit (), as well as the rapidly-varying scenario of the large-time limit (), yield the zero clock-ratio limit: .
- ▶
- The short-lag limit (), as well as the slowly-varying scenario of the large-time limit (), yield the unit clock-ratio limit: .
- ▶
- The regularly-varying scenario of the large-time limit () yields the OUP clock-ratio: , where is a positive exponent.
6.3. Range of Dependence
- ▶
- If is integrable at infinity () then the SSM is SRD.
- ▶
- If is not integrable at infinity () then the SSM is LRD.
7. Steady-State Dynamics
7.1. Langevin Dynamics
7.2. Logarithmic-Derivative Perspective
- ▶
- The slowly-varying scenario holds if and only if .
- ▶
- The regularly-varying scenario holds if and only if .
- ▶
- The rapidly-varying scenario holds if and only if .
- ▶
- If then the SSM is LRD.
- ▶
- If then the SSM is SRD.
7.3. Hazard-Rate Perspective
7.4. Examples
8. Overview
- ▶
- A scaling representation via the function of Equation (23).
- ▶
- A Langevin representation via the function of Equation (24).
- ▶
- A probabilistic representation via the random variable T of Equation (25).
- The SSM is a stationary process.
- The Langevin Equation (24) is time homogeneous.
- The clock is an exponential function, .
- The hazard rate is a flat function, .
- The random variable T is exponentially distributed with mean .
- ▶
- Regular-wise: the motions are in steady state, are Markov, and their dynamics are Langevin.
- ▶
- Anomalous-wise, and tuned by the one-dimensional parameter: the motions can display wild fluctuations—a.k.a. ‘Noah effect’—and they have an adjustable memory structure.
- ▶
- Anomalous-wise, and tuned by the infinite-dimensional parameter: the motions can display long-ranged temporal dependencies—a.k.a. ‘Joseph effect’—and they have an adjustable correlation structure.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Uhlenbeck, G.E.; Ornstein, L.S. On the theory of the Brownian motion. Phys. Rev. 1930, 36, 823. [Google Scholar] [CrossRef]
- Caceres, M.O.; Budini, A.A. The generalized Ornstein-Uhlenbeck process. J. Phys. Math. Gen. 1997, 30, 8427. [Google Scholar] [CrossRef]
- Bezuglyy, V.; Mehlig, B.; Wilkinson, M.; Nakamura, K.; Arvedson, E. Generalized Ornstein-Uhlenbeck processes. J. Math. Phys. 2006, 47, 073301. [Google Scholar] [CrossRef]
- Maller, R.A.; Muller, G.; Szimayer, A. Ornstein-Uhlenbeck processes and extensions. In Handbook of Financial Time Series; Springer: Berlin/Heidelberg, Germany, 2009; pp. 421–437. [Google Scholar]
- Debbasch, F.; Mallick, K.; Rivet, J. Relativistic Ornstein-Uhlenbeck process. J. Stat. Phys. 1997, 88, 945–966. [Google Scholar] [CrossRef]
- Graversen, S.; Peskir, G. Maximal inequalities for the Ornstein-Uhlenbeck process. Proc. Am. Math. Soc. 2000, 128, 3035–3041. [Google Scholar] [CrossRef]
- Aalen, O.O.; Gjessing, H.K. Survival models based on the Ornstein-Uhlenbeck process. Lifetime Data Anal. 2004, 10, 407–423. [Google Scholar] [CrossRef] [PubMed]
- Larralde, H. A first passage time distribution for a discrete version of the Ornstein–Uhlenbeck process. J. Phys. A Math. Gen. 2004, 37, 3759. [Google Scholar] [CrossRef]
- Eliazar, I.; Klafter, J. Markov-breaking and the emergence of long memory in Ornstein–Uhlenbeck systems. J. Phys. A Math. Theor. 2008, 41, 122001. [Google Scholar] [CrossRef]
- Eliazar, I.; Klafter, J. From Ornstein-Uhlenbeck dynamics to long-memory processes and fractional Brownian motion. Phys. Rev. E 2009, 79, 021115. [Google Scholar] [CrossRef]
- Wilkinson, M.; Pumir, A. Spherical Ornstein-Uhlenbeck Processes. J. Stat. Phys. 2011, 145, 113–142. [Google Scholar] [CrossRef]
- Gajda, J.; Wylomańska, A. Time-changed Ornstein-Uhlenbeck process. J. Phys. A Math. Theoretical 2015, 48, 135004. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Thapa, S.; Mardoukhi, Y.; Chechkin, A.V.; Metzler, R. Time averages and their statistical variation for the Ornstein-Uhlenbeck process: Role of initial particle distributions and relaxation to stationarity. Phys. Rev. E 2018, 98, 022134. [Google Scholar] [CrossRef]
- Thomas, P.J.; Lindner, B. Phase descriptions of a multidimensional Ornstein-Uhlenbeck process. Phys. Rev. E 2019, 99, 062221. [Google Scholar] [CrossRef]
- Mardoukhi, Y.; Chechkin, A.V.; Metzler, R. Spurious ergodicity breaking in normal and fractional Ornstein–Uhlenbeck process. New J. Phys. 2020, 22, 073012. [Google Scholar] [CrossRef]
- Giorgini, L.T.; Moon, W.; Wettlaufer, J.S. Analytical Survival Analysis of the Ornstein–Uhlenbeck Process. J. Stat. Phys. 2020, 181, 2404–2414. [Google Scholar] [CrossRef]
- Kearney, M.J.; Martin, R.J. Statistics of the first passage area functional for an Ornstein–Uhlenbeck process. J. Phys. A Math. Theor. 2021, 54, 055002. [Google Scholar] [CrossRef]
- Goerlich, R.; Li, M.; Albert, S.; Manfredi, G.; Hervieux, P.-A.; Genet, C. Noise and ergodic properties of Brownian motion in an optical tweezer: Looking at regime crossovers in an Ornstein-Uhlenbeck process. Phys. Rev. E 2021, 103, 032132. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.R. Anomalous scaling and first-order dynamical phase transition in large deviations of the Ornstein-Uhlenbeck process. Phys. Rev. E 2022, 105, 014120. [Google Scholar] [CrossRef]
- Kersting, H.; Orvieto, A.; Proske, F.; Lucchi, A. Mean first exit times of Ornstein–Uhlenbeck processes in high-dimensional spaces. J. Phys. A Math. Theor. 2023, 56, 215003. [Google Scholar] [CrossRef]
- Bonilla, L.L. Active Ornstein-Uhlenbeck particles. Phys. Rev. E 2019, 100, 022601. [Google Scholar] [CrossRef]
- Sevilla, F.J.; Rodríguez, R.F.; Gomez-Solano, J.R. Generalized Ornstein-Uhlenbeck model for active motion. Phys. Rev. E 2019, 100, 032123. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; O’BYrne, J.; Cates, M.E.; Fodor, É.; Nardini, C.; Tailleur, J.; van Wijland, F. Statistical mechanics of active Ornstein-Uhlenbeck particles. Phys. Rev. E 2021, 103, 032607. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.H.P.; Wittmann, R.; Löwen, H. Active Ornstein–Uhlenbeck model for self-propelled particles with inertia. J. Phys.: Condens. Matter 2021, 34, 035101. [Google Scholar]
- Dabelow, L.; Eichhorn, R. Irreversibility in Active Matter: General Framework for Active Ornstein-Uhlenbeck Particles. Front. Phys. 2021, 8, 516. [Google Scholar] [CrossRef]
- Trajanovski, P.; Jolakoski, P.; Zelenkovski, K.; Iomin, A.; Kocarev, L.; Sandev, T. Ornstein-Uhlenbeck process and generalizations: Particle dynamics under comb constraints and stochastic resetting. Phys. Rev. E 2023, 107, 054129. [Google Scholar] [CrossRef]
- Trajanovski, P.; Jolakoski, P.; Kocarev, L.; Sandev, T. Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting. Mathematics 2023, 11, 3576. [Google Scholar] [CrossRef]
- Dubey, A.; Pal, A. First-passage functionals for Ornstein Uhlenbeck process with stochastic resetting. arXiv 2023, arXiv:2304.05226. [Google Scholar] [CrossRef]
- Strey, H.H. Estimation of parameters from time traces originating from an Ornstein-Uhlenbeck process. Phys. Rev. E 2019, 100, 062142. [Google Scholar] [CrossRef]
- Janczura, J.; Magdziarz, M.; Metzler, R. Parameter estimation of the fractional Ornstein–Uhlenbeck process based on quadratic variation. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 103125. [Google Scholar]
- Trajanovski, P.; Jolakoski, P.; Kocarev, L.; Metzler, R.; Sandev, T. Generalised Ornstein-Uhlenbeck process: Memory effects and resetting. J. Phys. A Math. Theor. 2025, 58, 045001. [Google Scholar] [CrossRef]
- Pham, K.; Nguyen, A.T.; Nguyen, L.N.; Thi, T.V.D. Application of the Ornstein–Uhlenbeck Process to Generate Stochastic Vertical Wind Profiles. J. Aircr. 2025, 1–5. [Google Scholar] [CrossRef]
- Mandrysz, M.; Dybiec, B. Dynamical Multimodality in Systems Driven by Ornstein–Uhlenbeck Noise. Entropy 2025, 27, 263. [Google Scholar] [CrossRef]
- Xu, J.; Lu, Q.; Bar-Shalom, Y. Bayesian optimization for robust Identification of Ornstein-Uhlenbeck model. arXiv 2025, arXiv:2503.06381. [Google Scholar]
- Bassanoni, A.; Vezzani, A.; Barkai, E.; Burioni, R. Rare events and single big jump effects in Ornstein-Uhlenbeck processes. arXiv 2025, arXiv:2501.07704. [Google Scholar] [CrossRef]
- Doob, J.L. The Brownian Movement and Stochastic Equations. Ann. Math. 1942, 43, 351–369. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Introduction to Gaussian processes. Nato Asi Ser. Comput. Syst. Sci. 1998, 168, 133–166. [Google Scholar]
- Ibragimov, I.; Rozanov, Y. Gaussian Random Processes; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Lifshits, M. Lectures on Gaussian Processes; Springer: Berlin, Germany, 2012. [Google Scholar]
- Gillespie, D.T. Markov Processes: An Introduction for Physical Scientists; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Liggett, T.M. Continuous Time Markov Processes: An Introduction; American Mathematical Soc.: Providence, Rhode Island, NE, USA, 2010; Volume 113. [Google Scholar]
- Dynkin, E.B. Theory of Markov Processes; Dover: New York, NY, USA, 2012. [Google Scholar]
- Lindgren, G. Stationary Stochastic Processes: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Lindgren, G.; Rootzen, H.; Sandsten, M. Stationary Stochastic Processes for Scientists and Engineers; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Hida, T. Stationary Stochastic Processes; (MN-8); Princeton University Press: Princeton, NJ, USA, 2015; Volume 8. [Google Scholar]
- Eliazar, I. Five degrees of randomness. Phys. A Stat. Mech. Its Appl. 2021, 568, 125662. [Google Scholar] [CrossRef]
- Langevin, P. Sur la theorie du mouvement Brownien. Compt. Rendus 1908, 146, 530–533. [Google Scholar]
- Coffey, W.; Kalmykov, Y.P. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering; World Scientific: Singapore, 2012. [Google Scholar]
- Pavliotis, G.A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations; Springer: Berlin/Heidelberg, Germany, 2014; Volume 60. [Google Scholar]
- Borodin, A.N.; Salminen, P. Handbook of Brownian Motion: Facts and Formulae; Birkhauser: Basel, Switzerland, 2015. [Google Scholar]
- Garbaczewski, P.; Olkiewicz, R. Ornstein-Uhlenbeck-Cauchy process. J. Math. Phys. 2000, 41, 6843–6860. [Google Scholar] [CrossRef]
- Eliazar, I.; Klafter, J. A growth-collapse model: Levy inflow, geometric crashes, and generalized Ornstein-Uhlenbeck dynamics. Phys. A Stat. Mech. Its Appl. 2004, 334, 1–21. [Google Scholar] [CrossRef]
- Jongbloed, G.; Van Der Meulen, F.; Van Der Vaart, A. Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli 2005, 11, 759–791. [Google Scholar] [CrossRef]
- Eliazar, I.; Klafter, J. Levy, Ornstein-Uhlenbeck, and subordination: Spectral vs. jump description. J. Stat. 2005, 119, 165–196. [Google Scholar] [CrossRef]
- Eliazar, I.; Klafter, J. Stochastic Ornstein-Uhlenbeck Capacitors. J. Stat. Phys. 2005, 118, 177–198. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A.; Yang, Y. Estimation for non-negative Levy-driven Ornstein-Uhlenbeck processes. J. Appl. Probab. 2007, 44, 977–989. [Google Scholar] [CrossRef]
- Magdziarz, M. Short and long memory fractional Ornstein-Uhlenbeck alpha-stable processes. Stoch. Model. 2007, 23, 451–473. [Google Scholar] [CrossRef]
- Magdziarz, M. Fractional Ornstein-Uhlenbeck processes. Joseph effect in models with infinite variance. Phys. A Stat. Its Appl. 2008, 387, 123–133. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Lindner, A. Ornstein-Uhlenbeck related models driven by Levy processes. Stat. Stoch. Differ. Equ. 2012, 124, 383–427. [Google Scholar]
- Toenjes, R.; Sokolov, I.M.; Postnikov, E.B. Nonspectral Relaxation in One Dimensional Ornstein-Uhlenbeck Processes. Phys. Rev. Lett. 2013, 110, 150602. [Google Scholar] [CrossRef]
- Riedle, M. Ornstein-Uhlenbeck Processes Driven by Cylindrical Lévy Processes. Potential Anal. 2015, 42, 809–838. [Google Scholar] [CrossRef]
- Thiel, F.; Sokolov, I.M.; Postnikov, E.B. Nonspectral modes and how to find them in the Ornstein-Uhlenbeck process with white μ-stable noise. Phys. Rev. E 2016, 93, 052104. [Google Scholar] [CrossRef]
- Wolpert, R.L.; Taqqu, M.S. Fractional Ornstein–Uhlenbeck Lévy processes and the Telecom process: Upstairs and downstairs. Signal Process. 2005, 85, 1523–1545. [Google Scholar] [CrossRef]
- Onalan, O. Financial modelling with Ornstein-Uhlenbeck processes driven by Levy process. In Proceedings of the World Congress on Engineering, London, UK, 1–3 July 2009; Volume 2, pp. 1–3. [Google Scholar]
- Onalan, O. Fractional Ornstein-Uhlenbeck processes driven by stable Levy motion in finance. Int. Res. J. Financ. Econ. 2010, 42, 129–139. [Google Scholar]
- Shu, Y.; Feng, Q.; Kao, E.P.; Liu, H. Lévy-driven non-Gaussian Ornstein–Uhlenbeck processes for degradation-based reliability analysis. IIE Trans. 2016, 48, 993–1003. [Google Scholar] [CrossRef]
- Chevallier, J.; Goutte, S. Estimation of Levy-driven Ornstein-Uhlenbeck processes: Application to modeling of CO2 and fuel-switching. Ann. Oper. Res. 2017, 255, 169–197. [Google Scholar] [CrossRef]
- Endres, S.; Stubinger, J. Optimal trading strategies for Levy-driven Ornstein–Uhlenbeck processes. Appl. Econ. 2019, 51, 3153–3169. [Google Scholar] [CrossRef]
- Kabanov, Y.; Pergamenshchikov, S. Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process. Financ. Stoch. 2019, 24, 39–69. [Google Scholar] [CrossRef]
- Mba, J.C.; Mwambi, S.M.; Pindza, E. A Monte Carlo Approach to Bitcoin Price Prediction with Fractional Ornstein–Uhlenbeck Lévy Process. Forecasting 2022, 4, 409–419. [Google Scholar] [CrossRef]
- Mariani, M.C.; Asante, P.K.; Kubin, W.; Tweneboah, O.K. Data Analysis Using a Coupled System of Ornstein–Uhlenbeck Equations Driven by Lévy Processes. Axioms 2022, 11, 160. [Google Scholar] [CrossRef]
- Barrera, G.; Högele, M.A.; Pardo, J.C. Cutoff Thermalization for Ornstein–Uhlenbeck Systems with Small Lévy Noise in the Wasserstein Distance. J. Stat. Phys. 2021, 184, 27. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, H.; Yi, H. Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Levy Noises. J. Theor. Probab. 2023, 36, 78–98. [Google Scholar] [CrossRef]
- DDexheimer, N.; Strauch, C. On Lasso and Slope drift estimators for Lévy-driven Ornstein–Uhlenbeck processes. Bernoulli 2024, 30, 88–116. [Google Scholar] [CrossRef]
- Wang, C.; Shu, H.; Shi, Y.; Zhang, X. Parameter estimation for partially observed stochastic processes driven by Ornstein–Uhlenbeck processes with small Lévy noises. Int. J. Syst. Sci. 2025, 1–9. [Google Scholar] [CrossRef]
- Eliazar, I. Levy Noise Affects Ornstein–Uhlenbeck Memory. Entropy 2025, 27, 157. [Google Scholar] [CrossRef] [PubMed]
- Adler, R.; Feldman, R.; Taqqu, M. A Practical Guide to Heavy Tails: Statistical Techniques and Applications; Springer: New York, NY, USA, 1998. [Google Scholar]
- Nair, J.; Wierman, A.; Zwart, B. The Fundamentals of Heavy-Tails: Properties, Emergence, and Identification; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Mandelbrot, B.B.; Wallis, J.R. Noah, Joseph, and operational hydrology. Water Resour. Res. 1968, 4, 909–918. [Google Scholar] [CrossRef]
- Cox, B.; Laufer, J.G.; Arridge, S.R.; Beard, P.C.; Laufer, A.G.; Arridge, A.S.R. Long Range Dependence: A Review; Iowa State University: Ames, IA, USA, 1984. [Google Scholar]
- Doukhan, P.; Oppenheim, G.; Taqqu, M. (Eds.) Theory and Applications of Long-Range Dependence; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Rangarajan, G.; Ding, M. (Eds.) Processes with Long-Range Correlations: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Eliazar, I. Power Levy motion. I. Diffusion. Chaos Interdiscip. J. Nonlinear Sci. 2025, 35, 033157. [Google Scholar] [CrossRef] [PubMed]
- Eliazar, I. Power Levy motion. II. Evolution. Chaos Interdiscip. J. Nonlinear Sci. 2025, 35, 033158. [Google Scholar] [CrossRef]
- Eliazar, I. Power Levy motion: Correlations and Relaxation. Phys. A Stat. Mech. Its Appl. 2025, in press. [Google Scholar]
- Zolotarev, V.M. One-Dimensional Stable Distributions; American Mathematical Soc.: Providence, Rhode Island, NE, USA, 1986; Volume 65. [Google Scholar]
- Borak, S.; Hardle, W.; Weron, R. Stable Distributions; Humboldt-Universitat zu Berlin: Berlin, Germany, 2005. [Google Scholar]
- Nolan, J.P. Univariate Stable Distributions; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Bertoin, J. Levy Processes; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Ken-Iti, S. Levy Processes and Infinitely Divisible Distributions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Barndorff-Nielsen, O.E.; Mikosch, T.; Resnick, S.I. (Eds.) Levy Processes: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Shlesinger, M.F.; Klafter, J. Levy walks versus Levy flights. In On Growth and Form: Fractal and Non-Fractal Patterns in Physics; Springer: Dordrecht, The Netherlands, 1986; pp. 279–283. [Google Scholar]
- Shlesinger, M.F.; Klafter, J.; West, B.J. Levy walks with applications to turbulence and chaos. Phys. A Stat. Mech. Its Appl. 1986, 140, 212–218. [Google Scholar] [CrossRef]
- Allegrini, P.; Grigolini, P.; West, B.J. Dynamical approach to Lévy processes. Phys. Rev. E 1996, 54, 4760. [Google Scholar] [CrossRef]
- Shlesinger, M.F.; West, B.J.; Klafter, J. Lévy dynamics of enhanced diffusion: Application to turbulence. Phys. Rev. Lett. 1987, 58, 1100. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Self-similar anomalous diffusion and Levy-stable laws. Physics-Uspekhi 2003, 46, 821. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Gonchar, V.Y.; Klafter, J.; Metzler, R. Fundamentals of Levy flight processes. In Fractals, Diffusion, and Relaxation in Disordered Complex Systems: Advances in Chemical Physics, Part B; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 439–496. [Google Scholar]
- Metzler, R.; Chechkin, A.V.; Gonchar, V.Y.; Klafter, J. Some fundamental aspects of Lévy flights. Chaos Solitons Fractals 2007, 34, 129–142. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Metzler, R.; Klafter, J.; Gonchar, V.Y. Introduction to the theory of Levy flights. In Anomalous Transport: Foundations and Applications; Wiley-VCH: Weinheim, Germany, 2008; pp. 129–162. [Google Scholar]
- Dubkov, A.A.; Spagnolo, B.; Uchaikin, V.V. Levy flight superdiffusion: An introduction. Int. J. Bifurc. Chaos 2008, 18, 2649–2672. [Google Scholar] [CrossRef]
- Schinckus, C. How physicists made stable Levy processes physically plausible. Braz. J. Phys. 2013, 43, 281–293. [Google Scholar] [CrossRef]
- Zaburdaev, V.; Denisov, S.; Klafter, J. Levy walks. Rev. Mod. Phys. 2015, 87, 483–530. [Google Scholar] [CrossRef]
- Reynolds, A.M. Current status and future directions of Lévy walk research. Biol. Open 2018, 7, bio030106. [Google Scholar] [CrossRef]
- Abe, M.S. Functional advantages of Lévy walks emerging near a critical point. Proc. Natl. Acad. Sci. USA 2020, 117, 24336–24344. [Google Scholar] [CrossRef] [PubMed]
- Garg, K.; Kello, C.T. Efficient Lévy walks in virtual human foraging. Sci. Rep. 2021, 11, 5242. [Google Scholar] [CrossRef]
- Mukherjee, S.; Singh, R.K.; James, M.; Ray, S.S. Anomalous Diffusion and Lévy Walks Distinguish Active from Inertial Turbulence. Phys. Rev. Lett. 2021, 127, 118001. [Google Scholar] [CrossRef]
- Gunji, Y.-P.; Kawai, T.; Murakami, H.; Tomaru, T.; Minoura, M.; Shinohara, S. Lévy Walk in Swarm Models Based on Bayesian and Inverse Bayesian Inference. Comput. Struct. Biotechnol. J. 2021, 19, 247–260. [Google Scholar] [CrossRef]
- Park, S.; Thapa, S.; Kim, Y.-J.; A Lomholt, M.; Jeon, J.-H. Bayesian inference of Lévy walks via hidden Markov models. J. Phys. A Math. Theor. 2021, 54, 484001. [Google Scholar] [CrossRef]
- Romero-Ruiz, A.; Rivero, M.J.; Milne, A.; Morgan, S.; Filho, P.M.; Pulley, S.; Segura, C.; Harris, P.; Lee, M.R.; Coleman, K.; et al. Grazing livestock move by Lévy walks: Implications for soil health and environment. J. Environ. Manag. 2023, 345, 118835. [Google Scholar] [CrossRef]
- Sakiyama, T.; Okawara, M. A short memory can induce an optimal Levy walk. In World Conference on Information Systems and Technologies; Springer Nature: Cham, Switzerland, 2023; pp. 421–428. [Google Scholar]
- Levernier, N.; Textor, J.; Benichou, O.; Voituriez, R. Inverse square Levy walks are not optimal search strategies for d≥2. Phys. Rev. Lett. 2020, 124, 080601. [Google Scholar] [CrossRef]
- Guinard, B.; Korman, A. Intermittent inverse-square Lévy walks are optimal for finding targets of all sizes. Sci. Adv. 2021, 7, eabe8211. [Google Scholar] [CrossRef]
- Clementi, A.; d’Amore, F.; Giakkoupis, G.; Natale, E. Search via parallel Levy walks on Z2. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Virtual, 26–30 July 2021; pp. 81–91. [Google Scholar]
- Padash, A.; Sandev, T.; Kantz, H.; Metzler, R.; Chechkin, A.V. Asymmetric Lévy Flights Are More Efficient in Random Search. Fractal Fract. 2022, 6, 260. [Google Scholar] [CrossRef]
- Majumdar, S.N.; Mounaix, P.; Sabhapandit, S.; Schehr, G. Record statistics for random walks and Lévy flights with resetting. J. Phys. A Math. Theor. 2021, 55, 034002. [Google Scholar] [CrossRef]
- Zbik, B.; Dybiec, B. Levy flights and Levy walks under stochastic resetting. Phys. Rev. E 2024, 109, 044147. [Google Scholar] [CrossRef] [PubMed]
- Radice, M.; Cristadoro, G. Optimizing leapover lengths of Lévy flights with resetting. Phys. Rev. E 2024, 110, L022103. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, T.; Metzler, R.; Deng, W. Lévy walk dynamics in an external harmonic potential. Phys. Rev. E 2020, 101, 062127. [Google Scholar] [CrossRef]
- Aghion, E.; Meyer, P.G.; Adlakha, V.; Kantz, H. Bassler, K.E. Moses, Noah and Joseph effects in Levy walks. New J. Phys. 2021, 23, 023002. [Google Scholar] [CrossRef]
- Cleland, J.D.; Williams, M.A.K. Analytical Investigations into Anomalous Diffusion Driven by Stress Redistribution Events: Consequences of Lévy Flights. Mathematics 2022, 10, 3235. [Google Scholar] [CrossRef]
- Lim, S.C.; Muniandy, S.V. Self-similar Gaussian processes for modeling anomalous diffusion. Phys. Rev. E 2002, 66, 021114. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Chechkin, A.V.; Metzler, R. Scaled Brownian motion: A paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Phys. Chem. Chem. Phys. 2014, 16, 15811–15817. [Google Scholar]
- Thiel, F.; Sokolov, I.M. Scaled Brownian motion as a mean-field model for continuous-time random walks. Phys. Rev. E 2014, 89, 012115. [Google Scholar] [CrossRef] [PubMed]
- Safdari, H.; Chechkin, A.V.; Jafari, G.R.; Metzler, R. Aging scaled Brownian motion. Phys. Rev. E 2015, 91, 042107. [Google Scholar] [CrossRef]
- Safdari, H.; Cherstvy, A.G.; Chechkin, A.V.; Thiel, F.; Sokolov, I.M.; Metzler, R. Quantifying the non-ergodicity of scaled Brownian motion. J. Phys. A: Math. Theor. 2015, 48, 375002. [Google Scholar] [CrossRef]
- Bodrova, A.S.; Chechkin, A.V.; Cherstvy, A.G.; Metzler, R. Ultraslow scaled Brownian motion. New J. Phys. 2015, 17, 063038. [Google Scholar] [CrossRef]
- Bodrova, A.S.; Chechkin, A.V.; Cherstvy, A.G.; Safdari, H.; Sokolov, I.M.; Metzler, R. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion. Sci. Rep. 2016, 6, 30520. [Google Scholar] [CrossRef]
- Safdari, H.; Cherstvy, A.G.; Chechkin, A.V.; Bodrova, A.; Metzler, R. Aging underdamped scaled Brownian motion: Ensemble-and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Phys. Rev. E 2017, 95, 012120. [Google Scholar] [CrossRef]
- Bodrova, A.S.; Chechkin, A.V.; Sokolov, I.M. Scaled Brownian motion with renewal resetting. Phys. Rev. E 2019, 100, 012120. [Google Scholar] [CrossRef]
- Dos Santos, M.A.F.; Junior, L.M. Random diffusivity models for scaled Brownian motion. Chaos Solitons Fractals 2021, 144, 110634. [Google Scholar] [CrossRef]
- Dos Santos, M.A.F.; Menon, L., Jr.; Cius, D. Superstatistical approach of the anomalous exponent for scaled Brownian motion. Chaos Solitons Fractals 2022, 164, 112740. [Google Scholar] [CrossRef]
- Wang, W.; Metzler, R.; Cherstvy, A.G. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: Overview of related experimental observations and models. Phys. Chem. Chem. Phys. 2022, 24, 18482–18504. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.; Gerhold, S. Self-similar Gaussian Markov processes. arXiv 2020, arXiv:2008.03052. [Google Scholar]
- Eliazar, I. Power Brownian motion. J. Phys. A Math. Theor. 2024, 57, 03LT01. [Google Scholar] [CrossRef]
- Eliazar, I. Power Brownian Motion: An Ornstein–Uhlenbeck lookout. J. Phys. A Math. Theor. 2024, 58, 015001. [Google Scholar] [CrossRef]
- Eliazar, I. Taylor’s Law from Gaussian diffusions. J. Phys. A Math. Theor. 2025, 58, 015004. [Google Scholar] [CrossRef]
- Lamperti, J. Semi-stable stochastic processes. Trans. Am. Math. Soc. 1962, 104, 62–78. [Google Scholar] [CrossRef]
- Burnecki, K.; Maejima, M.; Weron, A. The Lamperti transformation for self-similar processes: Dedicated to the memory of Stamatis Cambanis. Yokohama Math. 1997, 44, 25–42. [Google Scholar]
- Flandrin, P.; Borgnat, P.; Amblard, P.-O. From stationarity to self-similarity, and back: Variations on the Lamperti transformation. In Processes with Long-Range Correlations; Springer: Berlin/Heidelberg, Germany, 2003; pp. 88–117. [Google Scholar]
- Magdziarz, M.; Zorawik, T. Lamperti transformation-cure for ergodicity breaking. Commun. Nonlinear Science Numer. Simul. 2019, 71, 202–211. [Google Scholar] [CrossRef]
- Magdziarz, M. Lamperti transformation of scaled Brownian motion and related Langevin equations. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105077. [Google Scholar] [CrossRef]
- Bianchi, S.; Angelini, D.; Pianese, A.; Frezza, M. Rough volatility via the Lamperti transform. Commun. Nonlinear Sci. Numer. Simul. 2023, 127, 107582. [Google Scholar] [CrossRef]
- Molchan, G. The persistence exponents of Gaussian random fields connected by the Lamperti transform. J. Stat. Phys. 2022, 186, 21. [Google Scholar] [CrossRef]
- Kyprianou, A.E.; Pardo, J.C. Stable Levy Processes via Lamperti-Type Representations; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Eliazar, I. Selfsimilar stochastic differential equations. Europhys. Lett. 2022, 136, 40002. [Google Scholar] [CrossRef]
- Eliazar, I. Power Laws: A Statistical Trek; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Eliazar, I.; Klafter, J. Correlation cascades of Levy-driven random processes. Phys. A Stat. Mech. Its Appl. 2007, 376, 1–26. [Google Scholar] [CrossRef]
- Eliazar, I.; Klafter, J. Fractal Levy correlation cascades. J. Phys. A Math. Theor. 2007, 40, F307. [Google Scholar] [CrossRef]
- Magdziarz, M. Correlation cascades, ergodic properties and long memory of infinitely divisible processes. Stoch. Process. Their Appl. 2009, 119, 3416–3434. [Google Scholar] [CrossRef]
- Weron, A.; Magdziarz, M. Generalization of the Khinchin theorem to Levy flights. Phys. Rev. Lett. 2010, 105, 260603. [Google Scholar] [CrossRef]
- Magdziarz, M.; Weron, A. Ergodic properties of anomalous diffusion processes. Ann. Phys. 2011, 326, 2431–2443. [Google Scholar] [CrossRef]
- Magdziarz, M.; Weron, A. Anomalous diffusion: Testing ergodicity breaking in experimental data. Phys. Rev. E 2011, 84, 051138. [Google Scholar] [CrossRef]
- Fogedby, H.C. Langevin equations for continuous time Levy flights. Phys. Rev. E 1994, 50, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, S.; Metzler, R.; Fogedby, H.C. Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 1999, 59, 2736. [Google Scholar] [CrossRef]
- Chechkin, A.; Gonchar, V.; Klafter, J.; Metzler, R.; Tanatarov, L. Stationary states of non-linear oscillators driven by Lévy noise. Chem. Phys. 2002, 284, 233–251. [Google Scholar] [CrossRef]
- Brockmann, D.; Sokolov, I. Lévy flights in external force fields: From models to equations. Chem. Phys. 2002, 284, 409–421. [Google Scholar] [CrossRef]
- Eliazar, I.; Klafter, J. Lévy-Driven Langevin Systems: Targeted Stochasticity. J. Stat. Phys. 2003, 111, 739–768. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Gonchar, V.Y.; Klafter, J.; Metzler, R.; Tanatarov, L.V. Levy flights in a steep potential well. J. Stat. Phys. 2004, 115, 1505–1535. [Google Scholar] [CrossRef]
- Dybiec, B.; Gudowska-Nowak, E.; Sokolov, I.M. Stationary states in Langevin dynamics under asymmetric Levy noises. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2007, 76, 041122. [Google Scholar] [CrossRef] [PubMed]
- Dybiec, B.; Sokolov, I.M.; Chechkin, A.V. Stationary states in single-well potentials under symmetric Lévy noises. J. Stat. Mech. Theory Exp. 2010, 2010, P07008. [Google Scholar] [CrossRef]
- Eliazar, I.I.; Shlesinger, M.F. Langevin unification of fractional motions. J. Phys. Math. And Theoretical 2012, 45, 162002. [Google Scholar] [CrossRef]
- Magdziarz, M.; Szczotka, W.; Żebrowski, P. Langevin Picture of Lévy Walks and Their Extensions. J. Stat. Phys. 2012, 147, 74–96. [Google Scholar] [CrossRef]
- Sandev, T.; Metzler, R.; Tomovski, Ž. Velocity and displacement correlation functions for fractional generalized Langevin equations. Fract. Calc. Appl. Anal. 2012, 15, 426–450. [Google Scholar] [CrossRef]
- Liemert, A.; Sandev, T.; Kantz, H. Generalized Langevin equation with tempered memory kernel. Phys. A Stat. Its Appl. 2017, 466, 356–369. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Deng, W. Langevin dynamics for a Lévy walk with memory. Phys. Rev. E 2019, 99, 012135. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Y.; Deng, W. Levy-walk-like Langevin dynamics. New J. Phys. 2019, 21, 013024. [Google Scholar] [CrossRef]
- Barrera, G.; Högele, M.A.; Pardo, J.C. The Cutoff Phenomenon in Wasserstein Distance for Nonlinear Stable Langevin Systems with Small Lévy Noise. J. Dyn. Differ. Equ. 2022, 36, 251–278. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Zhang, M.-G. Exponential Contractivity and Propagation of Chaos for Langevin Dynamics of McKean-Vlasov Type with Lévy Noises. Potential Anal. 2024, 62, 27–60. [Google Scholar] [CrossRef]
- BBao, J.; Fang, R.; Wang, J. Exponential ergodicity of Lévy driven Langevin dynamics with singular potentials. Stoch. Process. Their Appl. 2024, 172, 104341. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, W. Levy-walk-like Langevin dynamics affected by a time-dependent force. Phys. Rev. E 2021, 103, 012136. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Ge, M. Levy-walk-like Langevin dynamics with random parameters. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 013109. [Google Scholar] [CrossRef]
- Oechsler, D. Levy Langevin Monte Carlo. Stat. Comput. 2024, 34, 37. [Google Scholar] [CrossRef]
- Padash, A.; Capala, K.P.; Kantz, H.; Dybiec, B.; Shokri, B.; Metzler, R.; Chechkin, A. First-passage statistics for Levy flights with a drift. J. Phys. A Math. Theor. 2025, 58, 185002. [Google Scholar] [CrossRef]
- Daniel, K. The power and size of mean reversion tests. J. Empir. Finance 2001, 8, 493–535. [Google Scholar] [CrossRef]
- Eliazar, I. The misconception of mean-reversion. J. Phys. A Math. Theor. 2012, 45, 332001. [Google Scholar] [CrossRef]
- Allen, E. Environmental variability and mean-reverting processes. Discrete Contin. Dyn. Syst. Ser. B 2016, 21, 2073–2089. [Google Scholar] [CrossRef]
- Barlow, R.E.; Proschan, F. Mathematical Theory of Reliability; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1996. [Google Scholar]
- Finkelstein, M. Failure Rate Modelling for Reliability and Risk; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Dhillon, B.S. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Pareto, V. Manual of Political Economy; reprint edition; Oxford University Press: Oxford, UK, 2014; originally published by Droz, Geneva, in 1896. [Google Scholar]
- Weibull, W. A statistical theory of strength of materials. Proc. Roy. Swed. Inst. Eng. Res. 1939, 151, 5–45. [Google Scholar]
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar]
- Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 2005, 46, 323–351. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef]
- Arnold, B.C. Pareto Distributions; Routledge: London, UK, 2020. [Google Scholar]
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 505. [Google Scholar]
- Rinne, H. The Weibull Distribution: A Handbook; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- McCool, J.I. Using the Weibull Distribution: Reliability, Modeling, and Inference; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 950. [Google Scholar]
- Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; World Scientific: Singapore, 2000. [Google Scholar]
- Reiss, R.-D.; Thomas, M. Statistical Analysis of Extreme Values: With Applications to Insurance, Finance, Hydrology and Other Fields; Birkhauser: Basel, Switzerland, 2007. [Google Scholar]
- Hansen, A. The Three Extreme Value Distributions: An Introductory Review. Front. Phys. 2020, 8, 604053. [Google Scholar] [CrossRef]
- Phillips, J.C. Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 1996, 59, 1133. [Google Scholar] [CrossRef]
- Kalmykov, Y.P.; Coffey, W.T.; Rice, S.A. (Eds.) Fractals, Diffusion, and Relaxation in Disordered Complex Systems; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bouchaud, J.-P. Anomalous relaxation in complex systems: From stretched to compressed exponentials. In Anomalous Transport: Foundations and Applications; Wiley-VCH: Weinheim, Germany, 2008; pp. 327–345. [Google Scholar]
- Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philos. Trans. R. Soc. Lond. 1825, 115, 513–583. [Google Scholar]
- Winsor, C.P. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pollard, J.H.; Valkovics, E.J. The Gompertz distribution and its applications. Genus 1992, 48, 15–28. [Google Scholar] [PubMed]
- Redner, S. A Guide to First-Passage Processes; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Meltzer, R.; Oshanin, G.; Redner, S. (Eds.) First-Passage Phenomena and Their Applications; World Scientific: Singapore, 2014. [Google Scholar]
- Grebenkov, D.S.; Holcman, D.; Metzler, R. Preface: New trends in first-passage methods and applications in the life sciences and engineering. J. Phys. Math. And Theor. 2020, 53, 190301. [Google Scholar] [CrossRef]
- Evans, M.R.; Majumdar, S.N.; Schehr, G. Stochastic resetting and applications. J. Phys. A Math. Theor. 2020, 53, 193001. [Google Scholar] [CrossRef]
- Gupta, S.; Jayannavar, A.M. Stochastic Resetting: A (Very) Brief Review. Front. Phys. 2022, 10, 789097. [Google Scholar] [CrossRef]
- Reuveni, S.; Kundu, A. Preface: Stochastic resetting—Theory and applications. J. Phys. A Math. Theor. 2024, 57, 060301. [Google Scholar]
Median | Extended Variance | |
---|---|---|
Unconditional distribution | 0 | |
Conditional distribution |
Quantity | Function | Limit | Limit |
---|---|---|---|
(1) | 0 | 1 | |
(2) | 0 | ||
(3) | r | 0 | 1 |
(4) | r | 0 | 1 |
(5) | 0 |
Quantity | Function | |||
---|---|---|---|---|
(6) | ||||
(7) | ||||
(8) |
Clock | Origin | SRD | LRD | ||
---|---|---|---|---|---|
(1) | no | yes | |||
(2) | no | yes | |||
(3) | yes | no | |||
(4) | |||||
(5) | yes | no | yes | no |
OUP | LOUP | GS | BSSM | LSSM | |
---|---|---|---|---|---|
(1) Parameters | T | ||||
(2) Gaussian | yes | no | yes | yes | no |
(3) Markov | yes | yes | no | yes | yes |
(4) Stationary | yes | yes | yes | semi | semi |
(5) Noah | no | yes | no | no | yes |
(6) Joseph | no | no | yes | yes | yes |
(7) Correlation | no | no | yes | yes | yes |
(8) Memory | no | yes | no | no | yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliazar, I. Brown and Levy Steady-State Motions. Entropy 2025, 27, 643. https://doi.org/10.3390/e27060643
Eliazar I. Brown and Levy Steady-State Motions. Entropy. 2025; 27(6):643. https://doi.org/10.3390/e27060643
Chicago/Turabian StyleEliazar, Iddo. 2025. "Brown and Levy Steady-State Motions" Entropy 27, no. 6: 643. https://doi.org/10.3390/e27060643
APA StyleEliazar, I. (2025). Brown and Levy Steady-State Motions. Entropy, 27(6), 643. https://doi.org/10.3390/e27060643