Entropy-Based Human Activity Measure Using FMCW Radar
Abstract
1. Introduction
2. FMCW Radar-Based Activity Estimation Algorithm
2.1. FMCW Radar
2.2. FMCW Radar Signal Processing
2.3. Conventional Activity Measurement Methods
2.4. Proposed Activity Measurement Method
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pradhan, B.; Bhattacharyya, S.; Pal, K. IoT-based applications in healthcare devices. J. Healthc. Eng. 2021, 2021, 6632599. [Google Scholar] [CrossRef] [PubMed]
- Amin, M. Radar for Indoor Monitoring: Detection, Classification, and Assessment; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Fioranelli, F.; Le Kernec, J.; Shah, S.A. Radar for health care: Recognizing human activities and monitoring vital signs. IEEE Potentials 2019, 38, 16–23. [Google Scholar] [CrossRef]
- Leenders, N.; Nelson, T.; Sherman, W. Ability of different physical activity monitors to detect movement during treadmill walking. Int. J. Sport. Med. 2003, 24, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Fagard, R.H. Physical activity, physical fitness and the incidence of hypertension. J. Hypertens. 2005, 23, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Fagard, R.H.; Cornelissen, V.A. Effect of exercise on blood pressure control in hypertensive patients. Eur. J. Prev. Cardiol. 2007, 14, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Yim, D.; Lee, W.H.; Kim, J.I.; Kim, K.; Ahn, D.H.; Lim, Y.H.; Cho, S.H.; Park, H.K.; Cho, S.H. Quantified activity measurement for medical use in movement disorders through IR-UWB radar sensor. Sensors 2019, 19, 688. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Jang, M.H.; Lee, S. Identification of human motion using radar sensor in an indoor environment. Sensors 2021, 21, 2305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Microsoft kinect sensor and its effect. IEEE Multimed. 2012, 19, 4–10. [Google Scholar] [CrossRef]
- Gu, C.; Li, R.; Zhang, H.; Fung, A.Y.; Torres, C.; Jiang, S.B.; Li, C. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy. IEEE Trans. Biomed. Eng. 2012, 59, 3117–3123. [Google Scholar] [PubMed]
- Hong, H.; Zhang, L.; Gu, C.; Li, Y.; Zhou, G.; Zhu, X. Noncontact sleep stage estimation using a CW Doppler radar. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 260–270. [Google Scholar] [CrossRef]
- Gu, C.; He, Y.; Zhu, J. Noncontact vital sensing with a miniaturized 2.4 GHz circularly polarized Doppler radar. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Zhao, H.; Hong, H.; Miao, D.; Li, Y.; Zhang, H.; Zhang, Y.; Li, C.; Zhu, X. A noncontact breathing disorder recognition system using 2.4-GHz digital-IF Doppler radar. IEEE J. Biomed. Health Inform. 2018, 23, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Gu, C.; Inoue, T.; Li, C. A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring. IEEE Trans. Microw. Theory Tech. 2014, 62, 2812–2822. [Google Scholar] [CrossRef]
- Yoo, Y.; Rhee, K.W.; Song, H.; Shin, H.C. Respiration rate detection for multi-target using elevation-azimuth map in FMCW radar. In Proceedings of the 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Phuket, Thailand, 5–8 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 530–533. [Google Scholar]
- Song, H.; Yoo, Y.; Shin, H.C. In-vehicle passenger detection using FMCW radar. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 644–647. [Google Scholar]
- Alizadeh, M.; Shaker, G.; De Almeida, J.C.M.; Morita, P.P.; Safavi-Naeini, S. Remote monitoring of human vital signs using mm-wave FMCW radar. IEEE Access 2019, 7, 54958–54968. [Google Scholar] [CrossRef]
- Pallesen, S.; Grønli, J.; Myhre, K.; Moen, F.; Bjorvatn, B.; Hanssen, I.; Heglum, H.S.A. A pilot study of impulse radio ultra wideband radar technology as a new tool for sleep assessment. J. Clin. Sleep Med. 2018, 14, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Jokanović, B.; Amin, M. Fall detection using deep learning in range-Doppler radars. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 180–189. [Google Scholar] [CrossRef]
- Yoon, H.; Seul, J.; Kim, S.; Shin, H.C. Enhanced measurement of human activity using FMCW radar. In Proceedings of the 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Phuket, Thailand, 5–8 July 2022; pp. 1–5. [Google Scholar]
- Wang, H.; Xu, L.; Yan, Z.; Gulliver, T.A. Low-Complexity MIMO-FBMC Sparse Channel Parameter Estimation for Industrial Big Data Communications. IEEE Trans. Ind. Inform. 2021, 17, 3422–3430. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, P.; Li, X. Channel Parameter Estimation of mmWave MIMO System in Urban Traffic Scene: A Training Channel-Based Method. IEEE Trans. Intell. Transp. Syst. 2024, 25, 754–762. [Google Scholar] [CrossRef]
MOD630 Radar | ||
---|---|---|
Parameter | Symbol | Value |
Center Frequency | 60 GHz | |
Bandwidth | 3.0 GHz | |
Sampling Frequency | 1.2 MHz | |
Chirp Duration | 213 us | |
Scan Interval | 50 ms | |
Number of chirps | m | 64 |
Participant | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|
Gender | F | F | F | M | M | M | M | M |
Age [yr] | 23 | 21 | 21 | 23 | 24 | 22 | 26 | 25 |
Height [kg] | 155 | 158 | 163 | 167 | 168 | 171 | 179 | 182 |
Weight [kg] | 44 | 48 | 54 | 75 | 67 | 72 | 105 | 100 |
Gender | Method | Stand | Lunge | Walk | Run | Jump | RMSE |
---|---|---|---|---|---|---|---|
Female | Ground truth | 1.822 | 24.497 | 23.420 | 202.115 | 121.241 | - |
Conventional [20] | 3.108 | 48.057 | 42.799 | 83.539 | 104.917 | 55.243 | |
Proposed | 0.501 | 27.454 | 21.551 | 188.026 | 119.764 | 6.552 | |
Male | Ground truth | 1.273 | 24.240 | 23.224 | 76.076 | 119.613 | - |
Conventional [20] | 0.000 | 59.354 | 53.984 | 51.434 | 126.200 | 23.797 | |
Proposed | 0.000 | 24.215 | 52.663 | 82.304 | 108.520 | 14.353 | |
Overall | Ground truth | 1.479 | 24.336 | 23.298 | 123.341 | 120.224 | - |
Conventional [20] | 1.166 | 55.118 | 49.790 | 63.473 | 118.219 | 42.533 | |
Proposed | 0.188 | 25.430 | 40.996 | 121.950 | 112.737 | 11.157 |
Standard Deviation | T-Statistic | p-Value | |||
---|---|---|---|---|---|
Conventional method [20] | 0.693 | 0.578 | 54.776 | 2.688 | 0.0079 |
Proposed method | 0.945 | 0.893 | 31.149 | 2.887 | 0.0044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-H.; Shin, H.-C. Entropy-Based Human Activity Measure Using FMCW Radar. Entropy 2025, 27, 720. https://doi.org/10.3390/e27070720
Lee H-H, Shin H-C. Entropy-Based Human Activity Measure Using FMCW Radar. Entropy. 2025; 27(7):720. https://doi.org/10.3390/e27070720
Chicago/Turabian StyleLee, Hak-Hoon, and Hyun-Chool Shin. 2025. "Entropy-Based Human Activity Measure Using FMCW Radar" Entropy 27, no. 7: 720. https://doi.org/10.3390/e27070720
APA StyleLee, H.-H., & Shin, H.-C. (2025). Entropy-Based Human Activity Measure Using FMCW Radar. Entropy, 27(7), 720. https://doi.org/10.3390/e27070720