Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16
Abstract
:Introduction
- Maximum return on budgets
- Most effective configuration of machines
- Most effective allocation of raw materials
- Optimal workforce allocations to minimize labor and total time
- Static problems (there are several control factors that directly decide the desired value of the output):
- Smaller-the-Better approach is used when:
- ▪
- The ideal value for all undesirable characteristics is zero
- ▪
- The ideal value is finite and its maximum or minimum value is defined
- Larger-the-Better
- Nominal-the-Best approach is used when a specified value is most desired and neither a smaller nor a larger value is desirable.
- Dynamic problems (there is a signal input that directly decides the output):
- ○
- Sensitivity of the slope: the slope should be at the specified value (usually 1) when the output is:
- ▪
- An undesired characteristic (it can be treated as Smaller-the-Better)
- ▪
- A desirable characteristic (it can be treated as Larger-the-Better)
- ○
- Linearity (Larger-the-Better): is used when the dynamic characteristics are required to have direct proportionality between the input and output.
Method
Experimental runs | Factor(levels) | |||
---|---|---|---|---|
A(2) | B(2) | C(2) | D(2) | |
1 | 0 | 0 | 0 | - |
2 | 0 | 0 | 0 | - |
3 | 0 | 0 | 0 | - |
4 | 0 | 1 | 1 | - |
5 | 0 | 1 | 1 | - |
6 | 0 | 1 | 1 | - |
7 | 1 | 0 | 1 | - |
8 | 1 | 0 | 1 | - |
9 | 1 | 0 | 1 | - |
10 | 1 | 1 | 0 | - |
11 | 1 | 1 | 0 | - |
12 | 1 | 1 | 0 | - |
class liste{ function __construct(b,n){ this->b=b;//b: base of numeration this->n=n;//n: number of experiments (n%b=0) this->m=n/b; //number of repetitions for(s=0,i=0;i<b;i++){ this->d[i]=this->m;//clusters initialization s+=i*this->m; } this->s=s;//sum of elements for(i=0;i<n;i++){ this->v[i]=0;//elements initialization } } } function recurs(&ar,&o_a_a,$it,&is_OA){ if(it>=ar->n) return;//nothing to recourse if(check_empty(ar)){ if(check_orto(ar,o_a_a)){ is_OA=TRUE; return; }//ar is OA with o_a_a }else{ for(i=1;i<ar->b;i++){//0 is the default $ar->v[it]=i;//try with i $ar->d[i]--; recurs(ar,o_a_a,it+1,is_OA); if(is_OA) return; ar->d[i]++;//try with 0 ar->v[it]=0; recurs(ar,o_a_a,it+1,is_OA); if(is_OA) return; } } } function fill_first_oa(lvn,expn,&o_a_a_var){ for(k=0,i=0;i<expn;i++){ o_a_a_var[0][i]=k++; k%=lvn; }//fill like 0,1,2,0,1,2 (lvn=3) } //main program for Orthogonal Arrays (OA) ... fill_first(levels[0],expn,o_a_a);// first OA for(i=1;i<n;i++){//n: number of planned OAs ... lst = new liste(levels[i],expn); ... recurs(lst,o_a_a,0,stop);//stop: no more OAs; ... //display intermediary OAs (o_a_a) ... }
function rec(&a,b,na,va,nb,vb,pa,pb,bufb,nbufb, &orto_list,&norto_list){//output data if(va==0){//all combinations were exhausted for(i=0;i<na;i++){ c[bufb[i]]=(i-i%nb)/nb; }//it’s time to check our OA nc=(na/nb-1)*na/2; ort(c,na,nc,orto_list,norto_list); }else //do recursion for all remained combinations if(vb==0){ j=0; for(i=0;i<va;i++){ if(a[i]==b[j]){ bufb[]=b[$j]; nbufb++; if(j<nb-1)j++; }else{ newa[]=a[i]; } } rec(newa,array(),na,va-nb,nb,nb,0,0,bufb,nbufb, orto_list,norto_list); }else{ for(i=pa;i<va-vb+1;i++){ b[pb]=a[i]; rec1(a,b,na,va,nb,vb-1,i+1,pb+1,bufb,nbufb, orto_list,norto_list); } } }
orto_list,norto_list);
Results and Discussion
- Any level of any factor is a number that divides the number of experimental runs. This is the explanation for missing the orthogonal arrays for L5, L7, L11, and L13 (the number of the experimental runs could be divided just by themselves);
- In every experimental runs, in at least one case, the highest level of factor is equal with the number of experimental runs;
nexp | nf | L1 | ∑MF1 | L2 | ∑MF2 | L3 | ∑MF3 | nexp | nf | L1 | ∑MF1 | L2 | ∑MF2 | L3 | ∑MF3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 3 | 4 | 2 | 2 | 1 | 12 | 5 | 12 | 1 | 2 | 4 | ||||
2 | 3 | 6 | 5 | ||||||||||||
6 | 3 | 6 | 1 | 3 | 2 | 4 | 2 | 3 | 2 | 2 | 1 | ||||
3 | 3 | 4 | 1 | 3 | 2 | 2 | 2 | ||||||||
2 | 1 | 3 | 2 | 3 | 1 | 2 | 4 | ||||||||
8 | 7 | 4 | 4 | 2 | 3 | 4 | 12 | 4 | |||||||
4 | 2 | 2 | 5 | 3 | 12 | 1 | 6 | 2 | |||||||
2 | 7 | 14 | 6 | 7 | 5 | 2 | 1 | ||||||||
6 | 8 | 3 | 4 | 2 | 2 | 1 | 5 | 14 | 1 | 7 | 4 | ||||
8 | 1 | 4 | 3 | 2 | 2 | 15 | 8 | 5 | 4 | 3 | 4 | ||||
8 | 1 | 4 | 1 | 2 | 4 | 7 | 5 | 5 | 3 | 2 | |||||
4 | 6 | 15 | 1 | 3 | 6 | ||||||||||
5 | 8 | 3 | 2 | 2 | 5 | 2 | 3 | 5 | |||||||
8 | 2 | 2 | 3 | 5 | 1 | 3 | 6 | ||||||||
8 | 1 | 4 | 3 | 2 | 1 | 3 | 7 | ||||||||
8 | 1 | 2 | 4 | 6 | 15 | 1 | 5 | 5 | |||||||
4 | 8 | 4 | 5 | 6 | |||||||||||
9 | 5 | 3 | 5 | 5 | 3 | 3 | 3 | ||||||||
4 | 9 | 4 | 16 | 15 | 2 | 15 | |||||||||
9 | 2 | 3 | 2 | 14 | 4 | 1 | 2 | 13 | |||||||
9 | 1 | 3 | 3 | 13 | 8 | 1 | 2 | 12 | |||||||
10 | 6 | 10 | 1 | 5 | 5 | 4 | 2 | 2 | 11 | ||||||
3 | 5 | 2 | 2 | 1 | 12 | 16 | 1 | 2 | 11 | ||||||
12 | 11 | 2 | 11 | 10 | 16 | 1 | 8 | 1 | 2 | 8 | |||||
10 | 4 | 1 | 2 | 9 | 9 | 4 | 9 | ||||||||
9 | 4 | 2 | 2 | 7 | 4 | 3 | 2 | 6 | |||||||
7 | 4 | 4 | 2 | 3 | 7 | 8 | 7 | ||||||||
4 | 3 | 2 | 4 | 5 | 16 | 5 | |||||||||
3 | 7 | 16 | 2 | 2 | 3 | ||||||||||
6 | 4 | 6 | nexp = number of experimental runs | ||||||||||||
4 | 3 | 3 | 1 | 2 | 2 | nf = total number of factors | |||||||||
4 | 2 | 3 | 1 | 2 | 3 | Li = levels for associated number of factors i | |||||||||
3 | 4 | 2 | 2 | ∑MFi = total number of maximum factors i | |||||||||||
3 | 3 | 2 | 3 |
Experimental run | Factor(Levels) | ||||||
---|---|---|---|---|---|---|---|
A(2) | B(2) | C(2) | D(2) | E(2) | F(2) | G(2) | |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
2 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
3 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
4 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
5 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
6 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
7 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Experimental run | Factor(Levels) | |||||
---|---|---|---|---|---|---|
Y(2) | C(2) | D(2) | E(2) | F(2) | G(2) | |
1 | 1 | 1 | 1 | 0 | 0 | 0 |
2 | 3 | 1 | 0 | 1 | 1 | 0 |
3 | 1 | 0 | 0 | 1 | 0 | 1 |
4 | 3 | 0 | 1 | 0 | 1 | 1 |
5 | 0 | 1 | 0 | 0 | 1 | 1 |
6 | 2 | 1 | 1 | 1 | 0 | 1 |
7 | 0 | 0 | 1 | 1 | 1 | 0 |
8 | 2 | 0 | 0 | 0 | 0 | 0 |
Experimental run | Factor(Level) | ||||
---|---|---|---|---|---|
Y(4) | Z(4) | E(4) | F(4) | G(4) | |
1 | 1 | 3 | 0 | 0 | 0 |
2 | 3 | 2 | 1 | 1 | 0 |
3 | 1 | 0 | 1 | 0 | 1 |
4 | 3 | 1 | 0 | 1 | 1 |
5 | 0 | 2 | 0 | 1 | 1 |
6 | 2 | 3 | 1 | 0 | 1 |
7 | 0 | 1 | 1 | 1 | 0 |
8 | 2 | 0 | 0 | 0 | 0 |
Experimental run | Factor(Level) | ||||
---|---|---|---|---|---|
Q(8) | D(2) | E(2) | F(2) | G(2) | |
1 | 3 | 1 | 0 | 0 | 0 |
2 | 7 | 0 | 1 | 1 | 0 |
3 | 2 | 0 | 1 | 0 | 1 |
4 | 6 | 1 | 0 | 1 | 1 |
5 | 1 | 0 | 0 | 1 | 1 |
6 | 5 | 1 | 1 | 0 | 1 |
7 | 0 | 1 | 1 | 1 | 0 |
8 | 4 | 0 | 0 | 0 | 0 |
- Seven factors: 44×23, 42×25, 27
- Six factors: 83×42×21, 81×43×22, 81×41×24, 46
- Five factors: 83×22, 82×23, 81×43×2, 81×24
- Four factors: 84
Acknowledgements
References
- Ross, P.J. Taguchi Techniques for Quality Engineering; McGraw-Hill: New York, 1998. [Google Scholar]
- Czyzak, P.; Jaszkiewicz, A. Pareto simulated annealing – A metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis 1998, 7(1), 34–47. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for researcher Workers; Oliver and Boyd: London, UK, 1925. [Google Scholar]
- Ranjit, K.R. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; John Wiley & Sons: Hoboken, NJ, 2001. [Google Scholar]
- Fisher, R.A. The arrangement of field experiments. Jour. Min. Agr. Engl. 1926, 33, 503–513. [Google Scholar]
- Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization/UNIPUB, White Plain: Unipub/Kraus, NY, 1986. [Google Scholar]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; John Wiley & Sons: Hoboken, NJ, 2006. [Google Scholar]
- Taguchi, G.; Jugulum, R.; Taguchi, S. Computer-based Robust Engineering: Essentials for DFSS; ASQ Quality Press: Milwoukee, WI, 2004. [Google Scholar]
- Daneshvar, N.; Khataee, A.R.; Rasoulifard, M.H.; Pourhassan, M. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials 2007, 143(1-2), 214–219. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, B.J.; de Villiers, G.H. The application of the Taguchi method in the evaluation of mechanical flotation in waste activated sludge thickening. Resources, Conservation and Recycling 2007, 50(2), 202–210. [Google Scholar] [CrossRef]
- Tasirin, S.M.; Kamarudin, S.K.; Ghani, J.A.; Lee, K.F. Optimization of drying parameters of bird's eye chilli in a fluidized bed dryer. Journal of Food Engineering 2007, 80(2), 695–700. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chen, W.-S. Injection molding and injection compression molding of three-beam grating of DVD pickup lens. Sensors and Actuators A: Physical 2006, 125(2), 367–375. [Google Scholar] [CrossRef]
- Houng, J.-Y.; Liao, J.-H.; Wu, J.-Y.; Shen, S.-C.; Hsu, H.-F. Enhancement of asymmetric bioreduction of ethyl 4-chloro acetoacetate by the design of composition of culture medium and reaction conditions. Process Biochemistry 2007, 42(1), 1–7. [Google Scholar] [CrossRef]
- Romero-Villafranca, R.; Zúnica, L.; Romero-Zúnica, R. Ds-optimal experimental plans for robust parameter design. Journal of Statistical Planning and Inference 2007, 137(4), 1488–1495. [Google Scholar] [CrossRef]
- Elshennawy, A.K. Quality in the new age and the body of knowledge for quality engineers. Total Quality Management and Business Excellence 2004, 15(5-6), 603–614. [Google Scholar] [CrossRef]
- Ng, E.Y.K.; Ng, W.K. Parametric study of the biopotential equation for breast tumour identification using ANOVA and Taguchi method. Medical and Biological Engineering and Computing 2006, 44(1-2), 131–139. [Google Scholar] [CrossRef] [PubMed]
- Hedayat, A.S.; Sloane, N.J.A.; Stufken, J. Orthogonal Arrays: Theory and Applications; Springer-Verlag: New York, 1999. [Google Scholar]
- Fontani, S.; Niccolai, A.; Kapat, A.; Oliveri, R. Studies on the Maximization of Recombinant Helicobacter Pylori Neutrophil-Activating Protein Production in Escherichia Coli: Application of Taguchi Robust design and Response Surface Merhodology for Process Optimization. World Journal of Microbiology & Biotechnology 2003, 19, 711–717. [Google Scholar]
- del Alamo, J.; Fernandez, J.C.; Hernandez, M.; Nunez, Y.; Irusta, R.; Del Valle, J.L. Environmental optimisation of a hydro-moulding process. Journal of Cleaner Production 2004, 12, 153–157. [Google Scholar] [CrossRef]
- Kim, S.-T.; Park, M.-S.; Kim, H.-M. Systematic approach for the evaluation of the optimal fabrication conditions of a H2S gas sensor with Taguchi method. Sensors and Actuators B 2004, 102(2), 253–260. [Google Scholar] [CrossRef]
- Kim, K.D.; Choi, K.Y.; Kim, H.T. Experimental optimization of the formation of silver dendritic particles by electrochemical technique. Scripta Materialia 2005, 53, 571–575. [Google Scholar] [CrossRef]
- Lin, T.-S.; Wu, C.-F.; Hsieh, C.-T. Enhancement of water-repellent performance on functional coating by using the Taguchi method. Surface & Coatings Technology 2006, 200(18-19), 5253–5258. [Google Scholar]
- Trabelsi, K.; Rourou, S.; Loukil, H.; Majoul, S.; Kallel, H. Optimization of virus yield as a strategy to improve rabies vaccine production by Vero cells in a bioreactor. Journal of Biotechnology 2006, 121, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-C.; Park, O.O. Round pinholes in indium-tin-oxide thin films on the glass substrates: a Taguchi method analysis and theoretical approach to their origins. Vacuum 2004, 72(4), 411–418. [Google Scholar] [CrossRef]
- Poon, G.K.K.; Williams, D.J.; Chin, K.S. Optimising the Lithographic Patterning Effect in an Acid Copper Electroplating Process. The International Journal of Advanced Manufacturing Technology 2000, 16, 881–888. [Google Scholar] [CrossRef]
- Rocak, D.; Kosec, M.; Degen, A. Ceramic suspension optimization using factorial design of experiments. Journal of the European Ceramic Society 2002, 22, 391–395. [Google Scholar] [CrossRef]
- Reddy, T.A.J.; Kumar, Y.R.; Rao, C.S.P. Determination of Optimum Process Parameters using Taguchi’s Approach to Improve the Quality of SLS Parts. In Proceeding of the 17th IASTED International Conference Modeling and Simulation, Montreal, Canada, 2006; pp. 228–233.
- Lin, T.-S. The Use of Reliability in the Taguchi Method for the Optimisation of the Polishing Ceramic Gauge Block. International Journal of Advanced Manufacturing Technology 2003, 22, 237–242. [Google Scholar] [CrossRef]
- Shaji, S.; Radhakrishnan, V. Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. Journal of Materials Processing Technology 2003, 141(1), 51–59. [Google Scholar] [CrossRef]
- Cho, M.H.; Bahadur, S.; Pogosian, A.K. Friction and wear studies using Taguchi method on polyphenylene sulfide filled with a complex mixture of MoS2, Al2O3, and other compounds. Wear 2005, 258, 1825–1835. [Google Scholar] [CrossRef]
- Chua, B.W.; Lu, L.; Lai, M.O.; Wong, G.H.L. Investigation of complex additives on the microstructure and properties of low-temperature sintered PZT using the Taguchi method. Journal of Alloys and Compounds 2005, 386, 303–310. [Google Scholar] [CrossRef]
- Fung, C.-P.; Kang, P.-C. Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. Journal of Materials Processing Technology 2005, 170(3), 602–610. [Google Scholar] [CrossRef]
- Ha, J.-L.; Kung, Y.-S.; Hu, S.-C.; Fung, R.-F. Optimal design of a micro-positioning Scott-Russell mechanism by Taguchi method. Sensors and Actuators A 2006, 125(2), 565–572. [Google Scholar] [CrossRef]
- Ting, J.-H.; Shiau, S.-H.; Chen, Y.-J.; Pan, F.-M.; Wong, H.; Pu, G.M.; Kung, C.-Y. Preparation and properties of sputtered nitrogen-doped cobalt silicide film. Thin Solid Films 2004, 468, 155–160. [Google Scholar]
- Alsaran, A.; Celik, A.; Celik, C. Determination of the optimum conditions for ion nitriding of AISI 5140 steel. Surface and Coatings Technology 2002, 160, 219–226. [Google Scholar] [CrossRef]
- Ali, N.; Neto, V.F.; Mei, S.; Cabral, G.; Kousar, Y.; Titus, E.; Ogwu, A.A.; Misra, D.S.; Gracio, J. Optimisation of the new time-modulated CVD process using the Taguchi method. Thin Slid Films 2004, 469-471, 154–160. [Google Scholar] [CrossRef]
- Tan, O.; Zaimoglu, A.S.; Hinislioglu, S.; Altun, S. Taguchi approach for optimization of the bleeding on cement-based grouts. Tunnelling and Underground Space Technology 2005, 20(2), 167–173. [Google Scholar] [CrossRef]
- Sahin, Y. The prediction of wear resistance model for the metal matrix composites. Wear 2005, 258, 1717–1722. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Young, M.-S.; Chuang, C.-L.; Chang, C.-C. Fabrication optimization of carbon fiber electrode with Taguchi Method. Biosensors and Bioelectronics 2003, 18, 847–855. [Google Scholar] [CrossRef]
- Houng, J.-Y.; Hsu, H.-F.; Liu, Y.-H.; Wu, J.-Y. Applying the Taguchi robust design to the optimization of the asymmetric reduction of ethyl 4-chloro acetoacetate by bakers’ yeast. Journal of Biotechnology 2003, 100, 239–250. [Google Scholar]
- Oguz, E.; Keskinler, B.; Celik, C.; Celik, Z. Determination of the optimum conditions in the removal of Bomaplex Red CR-L dye from the textile wastewater using O3, H2O2, HCO3- and PAC. Journal of Hazardous Materials B 2006, 131, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.H.; Wang, C.C.; Liu, W.D.; Huang, F.Y. Machining Characteristics of Al2O3/6061Al Composite using Rotary EDM with a Disklike Electrode. International Journal of Advanced Manufacturing Technology 2000, 16, 322–333. [Google Scholar] [CrossRef]
- Yu, Y.-C.; Chen, X.-X.; Hung, T.-R.; Thibault, F. Optimization of Extrusion Blow Molding Processes Using Soft Computing and Taguchi’s Methos. Journal of Intelligent Manufacturing 2004, 15, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Ming-Der, J.; Yih-Fong, T. Optimization Of Electron-Beam Surface Hardening Of Cast Iron For High Wear Resistance Using Taguchi Method. International Journal of Advanced Manufacturing Technology 2004, 24, 190–198. [Google Scholar] [CrossRef]
- Wu, D.H.; Tsai, Y.J.; Yen, Y.T. Robust design of quartz crystal microbalance using finite element and Taguchi method. Sensors and Actuators B 2003, 92(3), 337–344. [Google Scholar] [CrossRef]
- Liu, C.H.; Chen, C.-C.A.; Huang, J.-S. The polishing of molds and dies using a compliance tool holder mechanism. Journal of Materials Processing Technology 2005, 166, 230–236. [Google Scholar] [CrossRef]
- Tosun, N.; Cogun, C.; Tosun, G. A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. Journal of Materials Processing Technology 2004, 152(3), 316–322. [Google Scholar] [CrossRef]
- Ghani, J.A.; Choudhury, I.A.; Hassan, H.H. Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Processing Technology 2004, 145(1), 84–92. [Google Scholar] [CrossRef]
- Statistica; Statsoft Inc., V.6.0., 2001. http://www.statsoft.com accessed 20 April 2006.
- Sylvester, J.J. Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers. Philosophical Magazine 1867, 34, 461–475. [Google Scholar]
- Sloane, N.J.A. Table of Orthogonal Arrays of Strength 2 with up to 100 Runs. 2007. http://www.research.att.com/~njas/doc/cent4.html#T1 accessed 23 May 2007.
- Sloane, N.J.A.; Stufken, J. A linear programming bound for orthogonal arrays with mixed levels. Journal of Statistical Planning and Inference 1996, 56, 295–305. [Google Scholar] [CrossRef]
- Rains, E.M.; Sloane, N.J.A.; Stufken, J. The lattice of N-run orthogonal arrays. Journal of Statistical Planning and Inference 2002, 102(2), 477–500. [Google Scholar] [CrossRef] [Green Version]
Appendix
L4
Experimental runs | Factor (levels) | ||
---|---|---|---|
A(4) | B(4) | C(2) | |
1 | 0 | 2 | 0 |
2 | 1 | 0 | 1 |
3 | 2 | 3 | 1 |
4 | 3 | 1 | 0 |
Experimental runs | Factor (levels) | ||
---|---|---|---|
A(2) | B(2) | C(2) | |
1 | 0 | 1 | 0 |
2 | 1 | 1 | 1 |
3 | 0 | 0 | 1 |
4 | 1 | 0 | 0 |
L6
Experimental runs | Factor (levels) | ||
---|---|---|---|
A(6) | B(3) | C(3) | |
1 | 0 | 1 | 0 |
2 | 1 | 1 | 2 |
3 | 2 | 0 | 1 |
4 | 3 | 2 | 2 |
5 | 4 | 2 | 0 |
6 | 5 | 0 | 1 |
Experimental runs | Factor (levels) | ||
---|---|---|---|
A(3) | B(3) | C(3) | |
1 | 0 | 1 | 1 |
2 | 1 | 0 | 2 |
3 | 2 | 2 | 2 |
4 | 0 | 1 | 1 |
5 | 1 | 2 | 0 |
6 | 2 | 0 | 0 |
Experimental runs | Factor (levels) | ||
---|---|---|---|
A(3) | B(3) | C(2) | |
1 | 1 | 1 | 0 |
2 | 1 | 1 | 1 |
3 | 2 | 0 | 0 |
4 | 2 | 2 | 1 |
5 | 0 | 2 | 0 |
6 | 0 | 0 | 1 |
L8
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(4) | B(4) | C(4) | D(4) | E(2) | F(2) | G(2) | |
1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
2 | 0 | 2 | 2 | 3 | 1 | 1 | 1 |
3 | 2 | 0 | 3 | 2 | 0 | 1 | 0 |
4 | 3 | 3 | 1 | 1 | 1 | 1 | 0 |
5 | 2 | 3 | 3 | 1 | 0 | 0 | 1 |
6 | 3 | 0 | 1 | 2 | 1 | 0 | 1 |
7 | 1 | 2 | 0 | 3 | 0 | 0 | 0 |
8 | 0 | 1 | 2 | 0 | 1 | 0 | 0 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(4) | B(4) | C(2) | D(2) | E(2) | F(2) | G(2) | |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
2 | 2 | 3 | 1 | 1 | 1 | 1 | 0 |
3 | 2 | 3 | 0 | 1 | 0 | 0 | 1 |
4 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
5 | 0 | 2 | 0 | 0 | 1 | 0 | 0 |
6 | 3 | 1 | 1 | 0 | 1 | 0 | 1 |
7 | 3 | 1 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 2 | 1 | 0 | 0 | 1 | 1 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(2) | B(2) | C(2) | D(2) | E(2) | F(2) | G(2) | |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
2 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
3 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
4 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
5 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
6 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
7 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(8) | B(8) | C(8) | D(4) | E(4) | F(2) | |
1 | 1 | 1 | 1 | 0 | 1 | 1 |
2 | 0 | 4 | 5 | 1 | 3 | 0 |
3 | 2 | 6 | 7 | 2 | 0 | 1 |
4 | 3 | 3 | 3 | 3 | 2 | 0 |
5 | 6 | 7 | 2 | 0 | 1 | 0 |
6 | 7 | 2 | 6 | 1 | 3 | 1 |
7 | 5 | 0 | 4 | 2 | 0 | 0 |
8 | 4 | 5 | 0 | 3 | 2 | 1 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(8) | B(4) | C(4) | D(4) | E(2) | F(2) | |
1 | 1 | 1 | 1 | 0 | 0 | 1 |
2 | 0 | 1 | 0 | 2 | 1 | 0 |
3 | 4 | 0 | 2 | 3 | 0 | 1 |
4 | 5 | 0 | 3 | 1 | 1 | 0 |
5 | 6 | 2 | 1 | 0 | 0 | 0 |
6 | 7 | 2 | 0 | 2 | 1 | 1 |
7 | 3 | 3 | 2 | 3 | 0 | 0 |
8 | 2 | 3 | 3 | 1 | 1 | 1 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(8) | B(4) | C(2) | D(2) | E(2) | F(2) | |
1 | 1 | 1 | 0 | 1 | 1 | 1 |
2 | 0 | 1 | 1 | 1 | 0 | 0 |
3 | 4 | 0 | 0 | 0 | 1 | 0 |
4 | 5 | 0 | 1 | 0 | 0 | 1 |
5 | 6 | 2 | 0 | 1 | 0 | 1 |
6 | 7 | 2 | 1 | 1 | 1 | 0 |
7 | 3 | 3 | 0 | 0 | 0 | 0 |
8 | 2 | 3 | 1 | 0 | 1 | 1 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(4) | B(4) | C(4) | D(4) | E(4) | F(4) | |
1 | 0 | 0 | 0 | 2 | 2 | 2 |
2 | 0 | 3 | 3 | 2 | 1 | 1 |
3 | 1 | 0 | 3 | 0 | 2 | 1 |
4 | 1 | 3 | 0 | 0 | 1 | 2 |
5 | 2 | 1 | 1 | 3 | 0 | 0 |
6 | 2 | 2 | 2 | 3 | 3 | 3 |
7 | 3 | 1 | 2 | 1 | 0 | 3 |
8 | 3 | 2 | 1 | 1 | 3 | 0 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(8) | B(8) | C(8) | D(2) | E(2) | |
1 | 1 | 1 | 1 | 0 | 1 |
2 | 0 | 4 | 5 | 1 | 1 |
3 | 6 | 6 | 6 | 0 | 1 |
4 | 7 | 3 | 2 | 1 | 1 |
5 | 2 | 7 | 3 | 0 | 0 |
6 | 3 | 2 | 7 | 1 | 0 |
7 | 5 | 0 | 4 | 0 | 0 |
8 | 4 | 5 | 0 | 1 | 0 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(8) | B(8) | C(2) | D(2) | E(2) | |
1 | 1 | 0 | 1 | 1 | 1 |
2 | 5 | 1 | 1 | 0 | 0 |
3 | 7 | 2 | 0 | 1 | 0 |
4 | 3 | 3 | 0 | 0 | 1 |
5 | 0 | 4 | 0 | 0 | 0 |
6 | 4 | 5 | 0 | 1 | 1 |
7 | 6 | 6 | 1 | 0 | 1 |
8 | 2 | 7 | 1 | 1 | 0 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(8) | B(2) | C(2) | D(2) | E(2) | |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 1 | 1 | 1 |
3 | 2 | 1 | 0 | 1 | 1 |
4 | 3 | 1 | 1 | 0 | 0 |
5 | 4 | 1 | 1 | 0 | 1 |
6 | 5 | 1 | 0 | 1 | 0 |
7 | 6 | 0 | 1 | 1 | 0 |
8 | 7 | 0 | 0 | 0 | 1 |
Experimental runs | Factor (levels) | |||
---|---|---|---|---|
A(8) | B(8) | C(8) | D(8) | |
1 | 0 | 0 | 3 | 4 |
2 | 1 | 7 | 0 | 2 |
3 | 2 | 6 | 6 | 6 |
4 | 3 | 1 | 5 | 0 |
5 | 4 | 5 | 7 | 3 |
6 | 5 | 2 | 1 | 7 |
7 | 6 | 3 | 4 | 5 |
8 | 7 | 4 | 2 | 1 |
L9
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(3) | B(3) | C(3) | D(3) | E(3) | |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 2 | 2 | 1 |
3 | 0 | 2 | 0 | 2 | 2 |
4 | 1 | 1 | 2 | 0 | 2 |
5 | 1 | 2 | 1 | 0 | 1 |
6 | 1 | 2 | 2 | 1 | 0 |
7 | 2 | 0 | 1 | 1 | 2 |
8 | 2 | 1 | 0 | 1 | 1 |
9 | 2 | 1 | 1 | 2 | 0 |
Experimental runs | Factor (levels) | |||
---|---|---|---|---|
A(9) | B(9) | C(9) | D(9) | |
1 | 0 | 0 | 7 | 5 |
2 | 1 | 8 | 0 | 4 |
3 | 2 | 1 | 1 | 1 |
4 | 3 | 7 | 8 | 6 |
5 | 4 | 6 | 6 | 0 |
6 | 5 | 5 | 3 | 7 |
7 | 6 | 2 | 2 | 8 |
8 | 7 | 4 | 5 | 3 |
9 | 8 | 3 | 4 | 2 |
Experimental runs | Factor (levels) | |||
---|---|---|---|---|
A(9) | B(9) | C(3) | D(3) | |
1 | 0 | 1 | 1 | 0 |
2 | 1 | 2 | 0 | 2 |
3 | 2 | 4 | 2 | 1 |
4 | 3 | 7 | 2 | 2 |
5 | 4 | 8 | 1 | 1 |
6 | 5 | 6 | 0 | 0 |
7 | 6 | 5 | 1 | 0 |
8 | 7 | 3 | 0 | 2 |
9 | 8 | 0 | 2 | 1 |
Experimental runs | Factor (levels) | |||
---|---|---|---|---|
A(9) | B(3) | C(3) | D(3) | |
1 | 0 | 1 | 1 | 1 |
2 | 1 | 1 | 0 | 0 |
3 | 2 | 0 | 2 | 2 |
4 | 3 | 1 | 0 | 2 |
5 | 4 | 2 | 2 | 1 |
6 | 5 | 2 | 1 | 0 |
7 | 6 | 0 | 2 | 0 |
8 | 7 | 2 | 1 | 2 |
9 | 8 | 0 | 0 | 1 |
L10
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(10) | B(5) | C(5) | D(5) | E(5) | F(5) | |
1 | 0 | 0 | 0 | 0 | 2 | 2 |
2 | 1 | 0 | 4 | 4 | 2 | 2 |
3 | 2 | 4 | 4 | 1 | 0 | 3 |
4 | 3 | 4 | 0 | 3 | 1 | 0 |
5 | 4 | 3 | 1 | 4 | 3 | 4 |
6 | 5 | 3 | 3 | 0 | 4 | 1 |
7 | 6 | 2 | 3 | 2 | 4 | 1 |
8 | 7 | 2 | 1 | 2 | 3 | 4 |
9 | 8 | 1 | 2 | 3 | 1 | 0 |
10 | 9 | 1 | 2 | 1 | 0 | 3 |
Experimental runs | Factor (levels) | ||
---|---|---|---|
A(5) | B(5) | C(2) | |
1 | 0 | 0 | 1 |
2 | 1 | 0 | 0 |
3 | 2 | 1 | 1 |
4 | 3 | 1 | 0 |
5 | 4 | 2 | 1 |
6 | 0 | 4 | 0 |
7 | 1 | 4 | 1 |
8 | 2 | 3 | 0 |
9 | 3 | 3 | 1 |
10 | 4 | 2 | 0 |
L12
Experimental runs | Factor (levels) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A(2) | B(2) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | J(2) | K(2) | |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
3 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
4 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
5 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
6 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
7 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
8 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
9 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
10 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A(4) | B(2) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | J(2) | |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
2 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
3 | 3 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
4 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
6 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
7 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
8 | 3 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
9 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
10 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
11 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
12 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | ||||||||
---|---|---|---|---|---|---|---|---|---|
A(4) | B(4) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
3 | 2 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
4 | 2 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
5 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
6 | 3 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
7 | 3 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
8 | 3 | 2 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
9 | 1 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
10 | 0 | 3 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
11 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
12 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(4) | B(4) | C(4) | D(4) | E(2) | F(2) | G(2) | |
1 | 1 | 1 | 1 | 2 | 0 | 1 | 1 |
2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
3 | 0 | 2 | 2 | 0 | 0 | 1 | 1 |
4 | 1 | 2 | 3 | 3 | 1 | 1 | 0 |
5 | 3 | 0 | 2 | 1 | 0 | 1 | 0 |
6 | 3 | 3 | 0 | 1 | 1 | 1 | 0 |
7 | 3 | 2 | 0 | 2 | 0 | 0 | 1 |
8 | 2 | 0 | 2 | 3 | 1 | 0 | 1 |
9 | 0 | 3 | 1 | 3 | 0 | 0 | 0 |
10 | 2 | 3 | 3 | 0 | 1 | 0 | 1 |
11 | 2 | 1 | 3 | 1 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(4) | B(4) | C(4) | D(2) | E(2) | F(2) | G(2) | |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 |
3 | 0 | 2 | 1 | 0 | 1 | 1 | 0 |
4 | 2 | 0 | 2 | 1 | 1 | 0 | 1 |
5 | 3 | 2 | 1 | 0 | 1 | 0 | 0 |
6 | 2 | 3 | 2 | 1 | 1 | 0 | 0 |
7 | 3 | 0 | 3 | 0 | 0 | 1 | 0 |
8 | 3 | 3 | 0 | 1 | 0 | 1 | 1 |
9 | 0 | 3 | 3 | 0 | 0 | 0 | 1 |
10 | 1 | 2 | 2 | 1 | 0 | 1 | 0 |
11 | 2 | 1 | 1 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(3) | B(3) | C(3) | D(3) | E(3) | F(3) | G(3) | |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
2 | 1 | 1 | 1 | 1 | 0 | 2 | 1 |
3 | 2 | 1 | 1 | 1 | 1 | 1 | 2 |
4 | 0 | 0 | 0 | 0 | 2 | 2 | 2 |
5 | 1 | 1 | 1 | 1 | 2 | 0 | 1 |
6 | 2 | 0 | 2 | 2 | 1 | 1 | 2 |
7 | 0 | 0 | 2 | 2 | 1 | 1 | 0 |
8 | 1 | 2 | 0 | 2 | 0 | 2 | 1 |
9 | 2 | 2 | 2 | 0 | 2 | 2 | 0 |
10 | 0 | 2 | 2 | 0 | 0 | 0 | 2 |
11 | 1 | 2 | 0 | 2 | 2 | 0 | 1 |
12 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(3) | B(3) | C(3) | D(3) | E(2) | F(2) | |
1 | 1 | 1 | 1 | 1 | 0 | 1 |
2 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 1 | 1 | 1 | 0 | 0 | 1 |
4 | 1 | 1 | 1 | 0 | 1 | 1 |
5 | 0 | 0 | 2 | 2 | 0 | 1 |
6 | 2 | 2 | 0 | 2 | 1 | 1 |
7 | 0 | 2 | 0 | 1 | 0 | 0 |
8 | 0 | 2 | 2 | 2 | 1 | 0 |
9 | 2 | 0 | 0 | 2 | 0 | 0 |
10 | 2 | 0 | 2 | 1 | 1 | 0 |
11 | 2 | 2 | 2 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 1 | 0 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(3) | B(3) | C(3) | D(2) | E(2) | F(2) | |
1 | 1 | 1 | 1 | 0 | 1 | 1 |
2 | 1 | 1 | 0 | 1 | 1 | 1 |
3 | 0 | 0 | 2 | 0 | 1 | 1 |
4 | 1 | 1 | 1 | 1 | 1 | 0 |
5 | 1 | 1 | 0 | 0 | 1 | 0 |
6 | 2 | 2 | 2 | 1 | 1 | 0 |
7 | 2 | 2 | 0 | 0 | 0 | 1 |
8 | 0 | 2 | 1 | 1 | 0 | 1 |
9 | 0 | 2 | 2 | 0 | 0 | 0 |
10 | 2 | 0 | 2 | 1 | 0 | 1 |
11 | 2 | 0 | 1 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 1 | 0 | 0 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(4) | B(4) | C(4) | D(3) | E(2) | F(2) | |
1 | 1 | 1 | 1 | 1 | 0 | 1 |
2 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 1 | 0 | 2 | 2 | 0 | 1 |
4 | 0 | 3 | 2 | 2 | 1 | 1 |
5 | 3 | 2 | 0 | 0 | 0 | 1 |
6 | 3 | 2 | 3 | 0 | 1 | 1 |
7 | 0 | 3 | 3 | 0 | 0 | 0 |
8 | 2 | 2 | 1 | 1 | 1 | 0 |
9 | 2 | 0 | 3 | 1 | 0 | 0 |
10 | 3 | 1 | 2 | 2 | 1 | 0 |
11 | 2 | 3 | 0 | 2 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 1 | 0 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(4) | B(4) | C(3) | D(2) | E(2) | F(2) | |
1 | 1 | 1 | 1 | 0 | 1 | 1 |
2 | 1 | 1 | 2 | 1 | 1 | 1 |
3 | 0 | 2 | 0 | 0 | 1 | 1 |
4 | 1 | 2 | 1 | 1 | 1 | 0 |
5 | 3 | 0 | 2 | 0 | 1 | 0 |
6 | 3 | 3 | 0 | 1 | 1 | 0 |
7 | 3 | 2 | 0 | 0 | 0 | 1 |
8 | 2 | 0 | 1 | 1 | 0 | 1 |
9 | 0 | 3 | 2 | 0 | 0 | 0 |
10 | 2 | 3 | 2 | 1 | 0 | 1 |
11 | 2 | 1 | 1 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 1 | 0 | 0 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(4) | B(4) | C(4) | D(4) | E(4) | F(4) | |
1 | 0 | 0 | 0 | 0 | 0 | 2 |
2 | 1 | 0 | 0 | 3 | 3 | 0 |
3 | 2 | 0 | 3 | 0 | 3 | 1 |
4 | 3 | 1 | 1 | 3 | 1 | 3 |
5 | 0 | 1 | 3 | 3 | 0 | 2 |
6 | 1 | 3 | 0 | 1 | 3 | 3 |
7 | 2 | 1 | 3 | 1 | 2 | 2 |
8 | 3 | 2 | 1 | 0 | 0 | 1 |
9 | 0 | 3 | 2 | 1 | 2 | 1 |
10 | 1 | 3 | 2 | 2 | 1 | 0 |
11 | 2 | 2 | 2 | 2 | 2 | 3 |
12 | 3 | 2 | 1 | 2 | 1 | 0 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(12) | B(2) | C(2) | D(2) | E(2) | |
1 | 0 | 1 | 1 | 1 | 0 |
2 | 1 | 1 | 0 | 0 | 1 |
3 | 2 | 0 | 1 | 0 | 0 |
4 | 3 | 0 | 0 | 1 | 0 |
5 | 4 | 0 | 0 | 1 | 1 |
6 | 5 | 1 | 0 | 0 | 1 |
7 | 6 | 0 | 1 | 0 | 1 |
8 | 7 | 0 | 1 | 1 | 1 |
9 | 8 | 1 | 1 | 0 | 0 |
10 | 9 | 1 | 0 | 1 | 0 |
11 | 10 | 1 | 1 | 1 | 1 |
12 | 11 | 0 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(6) | B(6) | C(6) | D(6) | E(6) | |
1 | 0 | 0 | 0 | 0 | 3 |
2 | 1 | 0 | 5 | 5 | 0 |
3 | 2 | 1 | 0 | 5 | 4 |
4 | 3 | 1 | 5 | 0 | 2 |
5 | 4 | 2 | 4 | 1 | 5 |
6 | 5 | 2 | 2 | 4 | 3 |
7 | 0 | 5 | 4 | 2 | 4 |
8 | 1 | 5 | 1 | 2 | 0 |
9 | 2 | 4 | 3 | 4 | 5 |
10 | 3 | 4 | 3 | 3 | 1 |
11 | 4 | 3 | 2 | 3 | 2 |
12 | 5 | 3 | 1 | 1 | 1 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(4) | B(4) | C(3) | D(3) | E(2) | |
1 | 1 | 1 | 0 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | 1 |
3 | 1 | 2 | 2 | 1 | 0 |
4 | 0 | 2 | 0 | 0 | 1 |
5 | 3 | 0 | 1 | 1 | 0 |
6 | 3 | 2 | 2 | 0 | 1 |
7 | 3 | 3 | 0 | 0 | 0 |
8 | 0 | 3 | 1 | 2 | 0 |
9 | 2 | 3 | 2 | 2 | 1 |
10 | 2 | 1 | 0 | 2 | 0 |
11 | 2 | 0 | 1 | 2 | 1 |
12 | 0 | 0 | 2 | 0 | 0 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(4) | B(3) | C(3) | D(2) | E(2) | |
1 | 1 | 1 | 1 | 0 | 1 |
2 | 2 | 1 | 1 | 1 | 1 |
3 | 1 | 1 | 1 | 0 | 1 |
4 | 2 | 1 | 1 | 1 | 1 |
5 | 3 | 0 | 0 | 0 | 1 |
6 | 0 | 2 | 2 | 1 | 1 |
7 | 1 | 0 | 2 | 0 | 0 |
8 | 2 | 0 | 2 | 1 | 0 |
9 | 0 | 2 | 0 | 0 | 0 |
10 | 3 | 2 | 0 | 1 | 0 |
11 | 3 | 2 | 2 | 0 | 0 |
12 | 0 | 0 | 0 | 1 | 0 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(3) | B(2) | C(2) | D(2) | E(2) | |
1 | 1 | 0 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | 1 |
3 | 0 | 0 | 1 | 1 | 0 |
4 | 0 | 1 | 1 | 0 | 1 |
5 | 2 | 0 | 1 | 0 | 0 |
6 | 2 | 1 | 1 | 0 | 0 |
7 | 1 | 0 | 0 | 1 | 0 |
8 | 2 | 1 | 0 | 1 | 1 |
9 | 0 | 0 | 0 | 0 | 1 |
10 | 1 | 1 | 0 | 1 | 0 |
11 | 2 | 0 | 0 | 0 | 1 |
12 | 0 | 1 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | |||
---|---|---|---|---|
A(12) | B(12) | C(12) | D(12) | |
1 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 10 | 11 |
3 | 2 | 11 | 1 | 10 |
4 | 3 | 10 | 11 | 1 |
5 | 4 | 9 | 2 | 7 |
6 | 5 | 2 | 9 | 6 |
7 | 6 | 8 | 7 | 5 |
8 | 7 | 7 | 8 | 2 |
9 | 8 | 6 | 5 | 4 |
10 | 9 | 5 | 6 | 8 |
11 | 10 | 3 | 4 | 9 |
12 | 11 | 4 | 3 | 3 |
Experimental runs | Factor (levels) | ||
---|---|---|---|
A(12) | B(6) | C(6) | |
1 | 0 | 1 | 1 |
2 | 1 | 1 | 1 |
3 | 2 | 0 | 5 |
4 | 3 | 4 | 5 |
5 | 4 | 5 | 2 |
6 | 5 | 5 | 0 |
7 | 6 | 4 | 2 |
8 | 7 | 3 | 3 |
9 | 8 | 3 | 4 |
10 | 9 | 2 | 4 |
11 | 10 | 2 | 3 |
12 | 11 | 0 | 0 |
L14
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
B(7) | C(7) | D(7) | E(7) | F(7) | A(2) | |
1 | 0 | 0 | 0 | 0 | 5 | 0 |
2 | 0 | 0 | 6 | 4 | 1 | 1 |
3 | 1 | 6 | 0 | 6 | 0 | 0 |
4 | 1 | 6 | 1 | 2 | 5 | 1 |
5 | 2 | 1 | 4 | 5 | 2 | 0 |
6 | 2 | 5 | 5 | 0 | 2 | 1 |
7 | 3 | 5 | 6 | 1 | 3 | 0 |
8 | 3 | 4 | 4 | 6 | 4 | 1 |
9 | 4 | 4 | 5 | 3 | 6 | 0 |
10 | 4 | 1 | 2 | 5 | 6 | 1 |
11 | 5 | 2 | 3 | 2 | 1 | 0 |
12 | 5 | 3 | 2 | 3 | 3 | 1 |
13 | 6 | 3 | 3 | 4 | 4 | 0 |
14 | 6 | 2 | 1 | 1 | 0 | 1 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(14) | B(7) | C(7) | D(7) | E(7) | |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 5 | 5 | 6 |
3 | 2 | 6 | 0 | 6 | 4 |
4 | 3 | 1 | 5 | 4 | 3 |
5 | 4 | 6 | 1 | 0 | 6 |
6 | 5 | 5 | 6 | 1 | 4 |
7 | 6 | 5 | 6 | 3 | 1 |
8 | 7 | 4 | 3 | 6 | 0 |
9 | 8 | 3 | 4 | 1 | 1 |
10 | 9 | 4 | 4 | 3 | 2 |
11 | 10 | 3 | 1 | 5 | 2 |
12 | 11 | 1 | 2 | 4 | 5 |
13 | 12 | 2 | 3 | 2 | 5 |
14 | 13 | 2 | 2 | 2 | 3 |
L15
Experimental runs | Factor (levels) | |||||||
---|---|---|---|---|---|---|---|---|
A(5) | B(5) | C(5) | D(5) | E(3) | F(3) | G(3) | H(3) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 1 | 0 | 0 | 2 | 2 | 2 | 2 | 0 |
3 | 2 | 0 | 4 | 3 | 0 | 1 | 2 | 2 |
4 | 3 | 1 | 4 | 3 | 1 | 0 | 0 | 0 |
5 | 4 | 1 | 0 | 4 | 2 | 0 | 1 | 2 |
6 | 0 | 1 | 4 | 2 | 2 | 2 | 1 | 1 |
7 | 1 | 4 | 1 | 4 | 1 | 2 | 0 | 2 |
8 | 2 | 2 | 3 | 1 | 1 | 1 | 0 | 2 |
9 | 3 | 2 | 1 | 3 | 0 | 2 | 1 | 1 |
10 | 4 | 2 | 3 | 1 | 1 | 1 | 2 | 1 |
11 | 0 | 4 | 2 | 4 | 0 | 0 | 2 | 0 |
12 | 1 | 4 | 2 | 0 | 2 | 0 | 2 | 2 |
13 | 2 | 3 | 3 | 2 | 2 | 1 | 0 | 0 |
14 | 3 | 3 | 2 | 0 | 0 | 2 | 1 | 1 |
15 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | 0 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(15) | B(3) | C(3) | D(3) | E(3) | F(3) | G(3) | |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
2 | 1 | 0 | 0 | 2 | 1 | 0 | 1 |
3 | 2 | 0 | 2 | 0 | 2 | 2 | 1 |
4 | 3 | 2 | 2 | 2 | 0 | 2 | 0 |
5 | 4 | 2 | 2 | 0 | 1 | 1 | 2 |
6 | 5 | 2 | 0 | 2 | 2 | 1 | 0 |
7 | 6 | 2 | 1 | 1 | 0 | 0 | 2 |
8 | 7 | 2 | 0 | 1 | 2 | 2 | 2 |
9 | 8 | 0 | 2 | 2 | 2 | 1 | 1 |
10 | 9 | 1 | 2 | 1 | 1 | 0 | 0 |
11 | 10 | 1 | 1 | 1 | 0 | 1 | 1 |
12 | 11 | 1 | 1 | 1 | 2 | 0 | 2 |
13 | 12 | 1 | 1 | 0 | 1 | 0 | 0 |
14 | 13 | 1 | 0 | 0 | 1 | 2 | 0 |
15 | 14 | 0 | 1 | 2 | 0 | 2 | 2 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(5) | B(5) | C(5) | D(5) | E(5) | F(3) | G(3) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 2 | 3 | 2 | 2 |
3 | 2 | 0 | 4 | 3 | 4 | 0 | 1 |
4 | 3 | 1 | 4 | 3 | 0 | 2 | 0 |
5 | 4 | 1 | 0 | 4 | 4 | 1 | 0 |
6 | 0 | 1 | 4 | 2 | 3 | 1 | 2 |
7 | 1 | 4 | 1 | 4 | 2 | 1 | 1 |
8 | 2 | 2 | 3 | 1 | 1 | 2 | 1 |
9 | 3 | 2 | 1 | 3 | 0 | 2 | 2 |
10 | 4 | 2 | 3 | 1 | 1 | 0 | 2 |
11 | 0 | 4 | 2 | 4 | 1 | 0 | 1 |
12 | 1 | 4 | 2 | 0 | 4 | 2 | 1 |
13 | 2 | 3 | 3 | 2 | 2 | 1 | 0 |
14 | 3 | 3 | 2 | 0 | 3 | 1 | 0 |
15 | 4 | 3 | 1 | 1 | 2 | 0 | 2 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(5) | B(5) | C(3) | D(3) | E(3) | F(3) | G(3) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 2 | 2 | 2 |
3 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
4 | 3 | 1 | 0 | 2 | 1 | 1 | 2 |
5 | 4 | 1 | 2 | 0 | 0 | 2 | 0 |
6 | 0 | 1 | 2 | 2 | 2 | 2 | 0 |
7 | 1 | 4 | 0 | 2 | 0 | 1 | 1 |
8 | 2 | 2 | 2 | 1 | 2 | 0 | 1 |
9 | 3 | 2 | 1 | 2 | 1 | 1 | 0 |
10 | 4 | 2 | 1 | 1 | 1 | 2 | 2 |
11 | 0 | 4 | 2 | 0 | 1 | 1 | 2 |
12 | 1 | 4 | 1 | 1 | 0 | 2 | 1 |
13 | 2 | 3 | 1 | 1 | 2 | 0 | 1 |
14 | 3 | 3 | 0 | 1 | 2 | 1 | 0 |
15 | 4 | 3 | 1 | 0 | 1 | 0 | 1 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(5) | B(3) | C(3) | D(3) | E(3) | F(3) | G(3) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 2 | 2 | 1 | 1 |
3 | 2 | 0 | 0 | 0 | 2 | 2 | 2 |
4 | 3 | 0 | 2 | 2 | 0 | 0 | 2 |
5 | 4 | 0 | 2 | 0 | 0 | 2 | 0 |
6 | 0 | 1 | 2 | 2 | 1 | 2 | 1 |
7 | 1 | 1 | 2 | 1 | 2 | 0 | 0 |
8 | 2 | 1 | 2 | 0 | 2 | 1 | 2 |
9 | 3 | 1 | 0 | 2 | 0 | 1 | 2 |
10 | 4 | 1 | 1 | 2 | 2 | 1 | 0 |
11 | 0 | 2 | 1 | 1 | 0 | 2 | 1 |
12 | 1 | 2 | 1 | 1 | 1 | 0 | 1 |
13 | 2 | 2 | 1 | 1 | 1 | 2 | 1 |
14 | 3 | 2 | 1 | 0 | 1 | 0 | 2 |
15 | 4 | 2 | 0 | 1 | 1 | 1 | 0 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(3) | B(3) | C(3) | D(3) | E(3) | F(3) | G(3) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 1 | 0 | 0 | 0 | 2 | 2 | 0 |
3 | 2 | 0 | 0 | 2 | 0 | 1 | 2 |
4 | 0 | 0 | 2 | 2 | 0 | 2 | 1 |
5 | 1 | 0 | 2 | 0 | 2 | 0 | 1 |
6 | 2 | 1 | 0 | 2 | 2 | 0 | 1 |
7 | 0 | 1 | 2 | 2 | 2 | 0 | 2 |
8 | 1 | 1 | 1 | 2 | 1 | 2 | 0 |
9 | 2 | 1 | 2 | 0 | 1 | 2 | 2 |
10 | 0 | 2 | 0 | 1 | 2 | 2 | 2 |
11 | 1 | 2 | 1 | 0 | 0 | 1 | 2 |
12 | 2 | 1 | 2 | 1 | 1 | 1 | 0 |
13 | 0 | 2 | 1 | 1 | 1 | 1 | 0 |
14 | 1 | 2 | 1 | 1 | 0 | 0 | 0 |
15 | 2 | 2 | 1 | 1 | 1 | 1 | 1 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(15) | B(5) | C(5) | D(5) | E(5) | F(5) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 4 | 3 | 3 | 3 |
3 | 2 | 0 | 2 | 3 | 3 | 4 |
4 | 3 | 4 | 0 | 4 | 2 | 1 |
5 | 4 | 4 | 0 | 1 | 4 | 3 |
6 | 5 | 4 | 4 | 0 | 0 | 4 |
7 | 6 | 3 | 4 | 0 | 3 | 0 |
8 | 7 | 3 | 3 | 3 | 2 | 2 |
9 | 8 | 3 | 2 | 4 | 1 | 2 |
10 | 9 | 2 | 3 | 4 | 2 | 0 |
11 | 10 | 2 | 2 | 1 | 4 | 1 |
12 | 11 | 2 | 1 | 2 | 0 | 4 |
13 | 12 | 1 | 3 | 2 | 1 | 1 |
14 | 13 | 1 | 1 | 2 | 1 | 2 |
15 | 14 | 1 | 1 | 1 | 4 | 3 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(5) | B(5) | C(5) | D(5) | E(5) | F(5) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 4 | 3 | 2 |
3 | 2 | 0 | 4 | 0 | 4 | 3 |
4 | 3 | 1 | 4 | 0 | 0 | 3 |
5 | 4 | 1 | 0 | 2 | 4 | 4 |
6 | 0 | 1 | 4 | 4 | 3 | 2 |
7 | 1 | 4 | 1 | 1 | 2 | 4 |
8 | 2 | 2 | 3 | 4 | 1 | 1 |
9 | 3 | 2 | 1 | 3 | 0 | 3 |
10 | 4 | 2 | 3 | 3 | 1 | 1 |
11 | 0 | 4 | 2 | 2 | 1 | 4 |
12 | 1 | 4 | 2 | 1 | 4 | 0 |
13 | 2 | 3 | 3 | 3 | 2 | 2 |
14 | 3 | 3 | 2 | 1 | 3 | 0 |
15 | 4 | 3 | 1 | 2 | 2 | 1 |
Experimental runs | Factor (levels) | |||||
---|---|---|---|---|---|---|
A(5) | B(5) | C(5) | D(3) | E(3) | F(3) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 2 | 2 | 2 |
3 | 2 | 0 | 4 | 0 | 0 | 2 |
4 | 3 | 1 | 4 | 0 | 2 | 0 |
5 | 4 | 1 | 0 | 2 | 1 | 0 |
6 | 0 | 1 | 4 | 2 | 2 | 1 |
7 | 1 | 4 | 1 | 0 | 2 | 0 |
8 | 2 | 2 | 3 | 2 | 0 | 1 |
9 | 3 | 2 | 1 | 0 | 1 | 2 |
10 | 4 | 2 | 3 | 1 | 2 | 1 |
11 | 0 | 4 | 2 | 1 | 1 | 2 |
12 | 1 | 4 | 2 | 1 | 1 | 1 |
13 | 2 | 3 | 3 | 2 | 0 | 0 |
14 | 3 | 3 | 2 | 1 | 0 | 1 |
15 | 4 | 3 | 1 | 1 | 1 | 2 |
L16
Experimental runs | Factor (levels) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A(2) | B(2) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | J(2) | K(2) | L(2) | M(2) | N(2) | O(2) | |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
3 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
4 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
5 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
6 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
7 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
8 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
9 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
10 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
11 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
12 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
13 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
14 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
15 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Experimental runs | Factor (levels) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A(4) | B(2) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | J(2) | K(2) | L(2) | M(2) | N(2) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
4 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
6 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
7 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
8 | 3 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
9 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
10 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
11 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
12 | 3 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
13 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
14 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
15 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
16 | 3 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
Experimental runs | Factor (levels) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A(8) | B(2) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | J(2) | K(2) | L(2) | M(2) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 2 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
4 | 3 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
5 | 4 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
6 | 5 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
7 | 6 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
8 | 7 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
9 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
10 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
11 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
12 | 3 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
13 | 4 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
14 | 5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
15 | 6 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
16 | 7 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
Experimental runs | Factor (levels) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A(4) | B(4) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | J(2) | K(2) | L(2) | M(2) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 2 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
4 | 3 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
5 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
6 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
7 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
8 | 3 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
9 | 0 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
10 | 1 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
11 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
12 | 3 | 2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
13 | 0 | 3 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
14 | 1 | 3 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
15 | 2 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
16 | 3 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
Experimental runs | Factor (levels) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A(16) | B(2) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | J(2) | K(2) | L(2) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
4 | 3 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
5 | 4 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
6 | 5 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
7 | 6 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
8 | 7 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
9 | 8 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
10 | 9 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
11 | 10 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
12 | 11 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
13 | 12 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
14 | 13 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
15 | 14 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
16 | 15 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
Experimental runs | Factor (levels) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A(16) | B(8) | C(2) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | J(2) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
4 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
5 | 4 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
6 | 5 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
7 | 6 | 3 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
8 | 7 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
9 | 8 | 7 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
10 | 9 | 7 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
11 | 10 | 6 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
12 | 11 | 6 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
13 | 12 | 5 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
14 | 13 | 5 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
15 | 14 | 4 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
16 | 15 | 4 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
Experimental runs | Factor (levels) | ||||||||
---|---|---|---|---|---|---|---|---|---|
A(4) | B(4) | C(4) | D(4) | E(4) | F(4) | G(4) | H(4) | I(4) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
2 | 1 | 0 | 0 | 0 | 3 | 2 | 3 | 0 | 2 |
3 | 2 | 0 | 0 | 3 | 2 | 3 | 1 | 3 | 0 |
4 | 3 | 0 | 3 | 2 | 0 | 0 | 1 | 1 | 0 |
5 | 0 | 1 | 3 | 2 | 0 | 3 | 3 | 2 | 3 |
6 | 1 | 1 | 3 | 1 | 3 | 0 | 3 | 3 | 1 |
7 | 2 | 1 | 3 | 1 | 1 | 3 | 1 | 0 | 2 |
8 | 3 | 1 | 2 | 2 | 3 | 1 | 1 | 2 | 3 |
9 | 0 | 2 | 2 | 3 | 2 | 1 | 0 | 0 | 2 |
10 | 1 | 2 | 2 | 1 | 3 | 3 | 0 | 1 | 0 |
11 | 2 | 2 | 0 | 3 | 0 | 2 | 3 | 1 | 1 |
12 | 3 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 3 |
13 | 0 | 3 | 1 | 3 | 2 | 0 | 2 | 1 | 1 |
14 | 1 | 3 | 2 | 0 | 1 | 2 | 2 | 3 | 0 |
15 | 2 | 3 | 1 | 1 | 1 | 2 | 0 | 3 | 3 |
16 | 3 | 3 | 1 | 0 | 1 | 1 | 2 | 0 | 1 |
Experimental runs | Factor (levels) | ||||||||
---|---|---|---|---|---|---|---|---|---|
A(4) | B(4) | C(4) | D(2) | E(2) | F(2) | G(2) | H(2) | I(2) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
3 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 1 |
4 | 3 | 0 | 2 | 1 | 0 | 1 | 1 | 0 | 1 |
5 | 0 | 1 | 2 | 1 | 1 | 0 | 1 | 1 | 0 |
6 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
7 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
8 | 3 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 |
9 | 0 | 2 | 3 | 1 | 1 | 1 | 0 | 1 | 1 |
10 | 1 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
11 | 2 | 2 | 3 | 0 | 1 | 1 | 0 | 0 | 0 |
12 | 3 | 2 | 2 | 0 | 0 | 1 | 1 | 1 | 0 |
13 | 0 | 3 | 3 | 0 | 0 | 0 | 1 | 0 | 1 |
14 | 1 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
15 | 2 | 3 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
16 | 3 | 3 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
Experimental runs | Factor (levels) | ||||||
---|---|---|---|---|---|---|---|
A(8) | B(8) | C(8) | D(8) | E(8) | F(8) | G(8) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
2 | 1 | 0 | 0 | 7 | 7 | 7 | 4 |
3 | 2 | 1 | 7 | 0 | 7 | 4 | 5 |
4 | 3 | 1 | 7 | 7 | 0 | 5 | 3 |
5 | 4 | 2 | 6 | 1 | 5 | 4 | 1 |
6 | 5 | 2 | 6 | 6 | 1 | 2 | 4 |
7 | 6 | 3 | 1 | 6 | 4 | 1 | 6 |
8 | 7 | 3 | 3 | 5 | 5 | 2 | 0 |
9 | 0 | 7 | 5 | 5 | 4 | 0 | 2 |
10 | 1 | 7 | 3 | 4 | 3 | 5 | 7 |
11 | 2 | 6 | 5 | 4 | 6 | 3 | 2 |
12 | 3 | 6 | 1 | 3 | 3 | 6 | 1 |
13 | 4 | 5 | 4 | 3 | 2 | 3 | 7 |
14 | 5 | 5 | 2 | 2 | 1 | 6 | 0 |
15 | 6 | 4 | 4 | 1 | 2 | 7 | 6 |
16 | 7 | 4 | 2 | 2 | 6 | 1 | 5 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(16) | B(16) | C(16) | D(16) | E(16) | |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 13 | 9 | 14 |
3 | 2 | 2 | 12 | 13 | 8 |
4 | 3 | 15 | 1 | 1 | 15 |
5 | 4 | 14 | 2 | 15 | 3 |
6 | 5 | 13 | 15 | 2 | 1 |
7 | 6 | 12 | 14 | 8 | 7 |
8 | 7 | 11 | 3 | 14 | 10 |
9 | 8 | 10 | 11 | 11 | 2 |
10 | 9 | 3 | 4 | 12 | 12 |
11 | 10 | 9 | 9 | 4 | 11 |
12 | 11 | 8 | 10 | 3 | 13 |
13 | 12 | 7 | 7 | 7 | 9 |
14 | 13 | 4 | 8 | 6 | 5 |
15 | 14 | 6 | 5 | 10 | 4 |
16 | 15 | 5 | 6 | 5 | 6 |
Experimental runs | Factor (levels) | ||||
---|---|---|---|---|---|
A(16) | B(16) | C(2) | D(2) | E(2) | |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 13 | 0 | 1 | 1 |
3 | 2 | 12 | 1 | 0 | 1 |
4 | 3 | 1 | 0 | 1 | 1 |
5 | 4 | 2 | 1 | 0 | 0 |
6 | 5 | 15 | 0 | 1 | 0 |
â7 | 6 | 14 | 1 | 0 | 0 |
8 | 7 | 3 | 1 | 1 | 1 |
9 | 8 | 11 | 1 | 0 | 1 |
10 | 9 | 4 | 1 | 1 | 0 |
11 | 10 | 9 | 1 | 1 | 0 |
12 | 11 | 10 | 0 | 1 | 0 |
13 | 12 | 7 | 0 | 0 | 1 |
14 | 13 | 8 | 0 | 0 | 1 |
15 | 14 | 5 | 1 | 1 | 1 |
16 | 15 | 6 | 0 | 0 | 0 |
© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Bolboacă, S.D.; Jäntschi, L. Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16. Entropy 2007, 9, 198-232. https://doi.org/10.3390/e9040198
Bolboacă SD, Jäntschi L. Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16. Entropy. 2007; 9(4):198-232. https://doi.org/10.3390/e9040198
Chicago/Turabian StyleBolboacă, Sorana D., and Lorentz Jäntschi. 2007. "Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16" Entropy 9, no. 4: 198-232. https://doi.org/10.3390/e9040198
APA StyleBolboacă, S. D., & Jäntschi, L. (2007). Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16. Entropy, 9(4), 198-232. https://doi.org/10.3390/e9040198