Next Article in Journal
Second Law Analysis in Convective Heat and Mass Transfer
Previous Article in Journal
On Optimization of a Non-Endorreversible Curzon-Ahlborn Cycle
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16

by
Sorana D. Bolboacă
1,* and
Lorentz Jäntschi
2
1
Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 6 Louis Pasteur, 400349 Cluj- Napoca, Romania
2
Technical University of Cluj-Napoca, 103-105 Muncii Bvd., 400641 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
Entropy 2007, 9(4), 198-232; https://doi.org/10.3390/e9040198
Submission received: 22 August 2007 / Revised: 2 January 1995 / Accepted: 1 November 2007 / Published: 31 December 2007

Abstract

:
A methodology for the design of an experiment is proposed in order to find as many schemes as possible with the maximum number of factors with different levels for the smallest number of experimental runs. An algorithm was developed and homemade software was implemented. The abilities in generation of the largest groups of orthogonal arrays were analyzed for experimental runs of 4, 6, 8, 9, 10, 12, 14, 15, and 16. The results show that the proposed method permits the construction of the largest groups of orthogonal arrays with the maximum number of factors.
AMS Classification:
05B15 Orthogonal arrays; Latin squares; Room squares; 94C12 Fault detection; testing; 11Y35 Analytic computations; 11Y40 Algebraic number theory computations; 11Y55 Calculation of integer sequences; 65F25 Orthogonalization; 62Kxx Design of experiments

Introduction

Manufacturing process optimizations are powerful methods that provide simulation scenarios that yield the desired outcome [1]. The optimization techniques could contain metaheuristic procedures and/or classical optimization methods [1,2] that involve setting a series of parameters in order to obtain:
  • Maximum return on budgets
  • Most effective configuration of machines
  • Most effective allocation of raw materials
  • Optimal workforce allocations to minimize labor and total time
Although the design of experiments concept was introduced by Fisher in the early 1920s [3], the most research on this topic was carried out in the academic environment [4]. One year later, Fisher [5] demonstrated the usefulness of his concept in agricultural experiments; he analyzed the optimum water, rain, sunshine, fertilizer, and soil conditions needed to produce the best crop. Taguchi [6] went further with the design of experiment concept by introducing his approach in 1986. According to the nature of the problem, the Taguchi approach divides optimization problems in two categories, using a log function of desired output as objective functions for optimization (called Signal-to-Noise ratios):
  • Static problems (there are several control factors that directly decide the desired value of the output):
    • Smaller-the-Better approach is used when:
      The ideal value for all undesirable characteristics is zero
      The ideal value is finite and its maximum or minimum value is defined
    • Larger-the-Better
    • Nominal-the-Best approach is used when a specified value is most desired and neither a smaller nor a larger value is desirable.
  • Dynamic problems (there is a signal input that directly decides the output):
    Sensitivity of the slope: the slope should be at the specified value (usually 1) when the output is:
    An undesired characteristic (it can be treated as Smaller-the-Better)
    A desirable characteristic (it can be treated as Larger-the-Better)
    Linearity (Larger-the-Better): is used when the dynamic characteristics are required to have direct proportionality between the input and output.
A triad could better characterize the aim of manufacturing process optimization: best quality – less failures – higher productivity. Factorial analysis can be used in order to find the best values for parameters implied in the manufacturing process [7]. Opposite to full factorial analysis, the Taguchi method reduces the number of experimental runs to a reasonable one, in terms of cost and time, by using orthogonal arrays [8].
The Taguchi method is used whenever the settings of interest parameters are necessary, not only for manufacturing processes. Therefore, the Taguchi approach is used in many domains such as: environmental sciences [9,10], agricultural sciences [11], physics [12], chemistry [13], statistics [14], management and business [15], medicine [16].
Choosing the proper orthogonal arrays suitable for the problem of interest is the main difficulty of the Taguchi’s approach. The available literature identified the use of the orthogonal arrays summarized in Table 1.
The literature reported many orthogonal arrays; however, a full scheme that includes all the possibilities of orthogonal arrays, even for a small number of experimental runs, could not be found yet [17]. Starting from this observation the aim of the present study was to generate the largest groups of orthogonal arrays for number of experimental runs from four to sixteen, with the maximum number of factors by using a series of homemade software.
Table 1. Design of experiments: reported scheme
Table 1. Design of experiments: reported scheme
Experimental runsSchemeReference
423[18]
827[19,20,21,22,23]
25[24]
23[25,26,27]
934[28,29,30,31,32,33]
33[34]
1645[35,36,37]
215[38]
1821×37[39,40,41]
22×36[42]
37[43]
21×36[44]
21×34[45,46]
21×33[47]
2733[48]

Method

Note that searching for as many as possible orthogonal arrays with the highest number of factors possible for the smallest number of experimental runs is not a trivial task. Table 2 presents an example of 12 experimental runs, in which adding of a new orthogonal array (D) to the existent ones (A, B, and C) is not possible, although the maximum number of factors with two levels for which the orthogonal arrays could be obtained is equal with eleven. The information regarding the maximum number of factors with two levels can be checked with Statistica software, Experimental design - Taguchi robust design experiments [49].
Table 2. Design of experiment: 12 experimental runs
Table 2. Design of experiment: 12 experimental runs
Experimental runsFactor(levels)
A(2)B(2)C(2)D(2)
1000-
2000-
3000-
4011-
5011-
6011-
7101-
8101-
9101-
10110-
11110-
12110-
As already mentioned, the objective of the research was to obtain the largest set of orthogonal arrays by using a series of homemade software. Note that there was no rule about generating these sets, as proven by the previous example from Table 2.
An application was designed for generating orthogonal arrays from a list of factor levels (level array) using a recursive function (recurs), a class (liste) for storing current array (lst instance of liste), and an initialization function (fill_first_oa):
      class liste{
       function __construct(b,n){
        this->b=b;//b: base of numeration
        this->n=n;//n: number of experiments (n%b=0)
        this->m=n/b; //number of repetitions
        for(s=0,i=0;i<b;i++){
         this->d[i]=this->m;//clusters initialization
         s+=i*this->m;
        }
        this->s=s;//sum of elements
        for(i=0;i<n;i++){
         this->v[i]=0;//elements initialization
        }
       }
      }
      function recurs(&ar,&o_a_a,$it,&is_OA){
       if(it>=ar->n) return;//nothing to recourse
       if(check_empty(ar)){
       if(check_orto(ar,o_a_a)){
         is_OA=TRUE;
         return;
        }//ar is OA with o_a_a
       }else{
        for(i=1;i<ar->b;i++){//0 is the default
         $ar->v[it]=i;//try with i
         $ar->d[i]--;
         recurs(ar,o_a_a,it+1,is_OA);
         if(is_OA) return;
         ar->d[i]++;//try with 0
         ar->v[it]=0;
         recurs(ar,o_a_a,it+1,is_OA);
         if(is_OA) return;
        }
       }
      }
      function fill_first_oa(lvn,expn,&o_a_a_var){
       for(k=0,i=0;i<expn;i++){
        o_a_a_var[0][i]=k++;
        k%=lvn;
       }//fill like 0,1,2,0,1,2 (lvn=3)
      }
      //main program for Orthogonal Arrays (OA)
       ...
       fill_first(levels[0],expn,o_a_a);// first OA
       for(i=1;i<n;i++){//n: number of planned OAs
        ...
        lst = new liste(levels[i],expn);
        ...
        recurs(lst,o_a_a,0,stop);//stop: no more OAs;
        ...
        //display intermediary OAs (o_a_a)
        ...
       }
	  
Another application was designed for generating the orthogonal arrays having the same number of levels (levels) for a given number of experimental runs (expn) starting with a list of already found orthogonal arrays (orto_list, which is an array of arrays), using a recursive function (rec), and an orthogonal testing function (ort, which also add the new OA to the list on successful):
      function rec(&a,b,na,va,nb,vb,pa,pb,bufb,nbufb,
         &orto_list,&norto_list){//output data
       if(va==0){//all combinations were exhausted
        for(i=0;i<na;i++){
         c[bufb[i]]=(i-i%nb)/nb;
        }//it’s time to check our OA
        nc=(na/nb-1)*na/2;
        ort(c,na,nc,orto_list,norto_list);
       }else //do recursion for all remained combinations
        if(vb==0){
        j=0;
        for(i=0;i<va;i++){
         if(a[i]==b[j]){
          bufb[]=b[$j];
          nbufb++;
          if(j<nb-1)j++;
         }else{
          newa[]=a[i];
         }
        }
        rec(newa,array(),na,va-nb,nb,nb,0,0,bufb,nbufb,
           orto_list,norto_list);
       }else{
        for(i=pa;i<va-vb+1;i++){
         b[pb]=a[i];
         rec1(a,b,na,va,nb,vb-1,i+1,pb+1,bufb,nbufb,
           orto_list,norto_list);
        }
       }
      }
	  
The main program calls the rec function after initializing the identical permutation (a[i]=i). Then, the results are displayed (orto_list):
rec(a,array(),expn,expn,expn/levels,expn/levels,0,0,array(),0,
orto_list,norto_list);
The rec function generates all possible distinct permutations of, for example, a set like:
{0,0,0,1,1,1,2,2,2}
by taking into account that the changing of a pair of positions (from 0 to 9 in our case) is relevant only for the positions that point to different values.
Thus, the complexity of the problem solved by rec function is (b = base, 3 in above example, n = number of experimental runs, 9 in the example above, which give a total number of combinations equal with 1680):
(n,b) ∙ (n-b,b) ∙ (n-2b,b)∙…

Results and Discussion

The programs presented in the previous section were run in order to reach the aim of the research for the following number of experiments: 4, 6, 8, 9, 10, 12, 14, 15, and 16. The largest groups of orthogonal arrays were generated. The results according to the number of factors and associated levels by the number of experimental runs were summarized and presented in Table 3. Note that only the maximum number of factors with associated levels according to the number of experimental runs was reported. The schemes that were included into the reported ones were not displayed; for example, for L9 only the 35 scheme was reported and not the 34 scheme, as this was obviously included into the 35 scheme. As presented in Table 3, a total number of sixty-three schemes were identified: 2 for L4, 3 for L6, 12 for L8, 4 for L9, 2 for L10, 18 for L12, 2 for L14, 9 for L15, and 11 for L16.
Note that the following are true (see Table 3):
  • Any level of any factor is a number that divides the number of experimental runs. This is the explanation for missing the orthogonal arrays for L5, L7, L11, and L13 (the number of the experimental runs could be divided just by themselves);
  • In every experimental runs, in at least one case, the highest level of factor is equal with the number of experimental runs;
For the number of experimental runs equal with 4, 8, 12, and 16, the highest number of factors is given by the expression: nF = nE – 1 (where nF = number of factors, nE = number of experimental runs), as the Hadamard matrix shown [50].
The comparison of the resulted schemes (Table 3) with the table of orthogonal arrays maintained by Sloane [51] (who identified one scheme for L4, L6, L9, L10, L14, and L15, 2 schemes for L8, four schemes for L12, and seven schemes for L16) indicates that the number is greater and the contribution to the orthogonal arrays database is significant. Furthermore, there are not any schemes reported by Sloane [51] that cannot be identified by using the implemented software (see the Material section).
The analysis of the available literature and software suggests that orthogonal arrays that are reported for the first time were identified.
Table 3. Number of experimental runs (nexp), maximum number of factors (nf), levels (Li) and maximum number of factors for specified levels (∑MFi)
Table 3. Number of experimental runs (nexp), maximum number of factors (nf), levels (Li) and maximum number of factors for specified levels (∑MFi)
nexpnfL1∑MF1L2∑MF2L3∑MF3 nexpnfL1∑MF1L2∑MF2L3∑MF3
434221 12512124
23 65
636132 423221
33 413222
2132 3124
874423 4124
4225 312162
27 1467521
6834221514174
8143221585434
81412475532
46 15136
58322 5235
8223 5136
81432137
8124 615155
484 56
9535 5333
494 1615215
9232 1441213
9133 1381212
10610155 42211
35221 12161211
1211211 101618128
104129 949
94227 4326
74423 787
4324 5165
37 16223
646 nexp = number of experimental runs
433122 nf = total number of factors
423123 Li = levels for associated number of factors i
3422 ∑MFi = total number of maximum factors i
3323
One observation that resulted from the investigated cases refers to the modality of constructing orthogonal arrays. The orthogonal arrays could be classified as fixed-level (all factors have the same number of levels) and mixed-level (the factors have different levels). The linear programming can be used for fixed-level orthogonal arrays construction [52]. The mixed-level orthogonal arrays can be constructed using the expansive replacement method [17] or the “mixed spreads" approach [53]. The analysis of the orthogonal arrays obtained by using the developed programs revealed that a new factor could be constructed by the linear combination of two existing factors. Thus, a factor that is independent from all the other orthogonal arrays factors results ((10)x · A + B, (100)x · A + (10)x · B + C, where x = number of levels, A, B, and C = elements of vector as modulo x values (from zero to nE – 1, nE = number of experimental runs)).
Let us take for example the L8 (27) orthogonal array (see Table 4).
Table 4. L8 (27) orthogonal array
Table 4. L8 (27) orthogonal array
Experimental runFactor(Levels)
A(2)B(2)C(2)D(2)E(2)F(2)G(2)
10111000
21110110
30100101
41101011
50010011
61011101
70001110
81000000
The L8 (41×25) orthogonal array is obtained (see Table 5) by the linear combination of the two-level factors A and B (Table 4).
Table 5. L8 (41×25) orthogonal array
Table 5. L8 (41×25) orthogonal array
Experimental runFactor(Levels)
Y(2)C(2)D(2)E(2)F(2)G(2)
1111000
2310110
3100101
4301011
5010011
6211101
7001110
8200000
The L8 (42×23) orthogonal array presented in Table 6 is obtained by the linear combination of C and D factors (Table 4).
Table 6. L8 (42×23) orthogonal array
Table 6. L8 (42×23) orthogonal array
Experimental runFactor(Level)
Y(4)Z(4)E(4)F(4)G(4)
113000
232110
310101
431011
502011
623101
701110
820000
The L8 (81×24) orthogonal array could also been obtained (see Table 7) by the linear combination of A, B and C factors (see Table 4).
Table 7. L8 (81×24) orthogonal array
Table 7. L8 (81×24) orthogonal array
Experimental runFactor(Level)
Q(8)D(2)E(2)F(2)G(2)
131000
270110
320101
461011
510011
651101
701110
840000
Although some new factors with associated levels could be obtained, the linear combination of factors could not retrieve the maximum numbers of possible combinations. This can be observed by looking at the obtained results presented in Table 3. For example, the proposed method identified a number of twelve schemes as the largest groups of orthogonal arrays for L8:
  • Seven factors: 44×23, 42×25, 27
  • Six factors: 83×42×21, 81×43×22, 81×41×24, 46
  • Five factors: 83×22, 82×23, 81×43×2, 81×24
  • Four factors: 84
The aim of the research was reached: the largest groups of orthogonal arrays for the studied number of experimental runs were identified. It is already known that the Taguchi approach can satisfy the needs of optimum process design and can reduce manufacturing costs [4]. The orthogonal arrays used by the Taguchi approach allow the study of the simultaneous effect of several factors efficiently, providing better results in smaller number of experimental runs [1,4]. The orthogonal arrays resulted from the present research have an advantage as compared with known orthogonal arrays: they allow the investigation of a greater number of factors with different levels. Having a clear list of all the largest sets of orthogonal arrays possible for a given number of experimental runs, the design of experiments could be improved and simplified. A more useful optimization of manufacturing design could be obtained by using the greatest number of factors’ levels and the smallest number of experimental runs.
The generation of the largest groups of orthogonal arrays could be further developed. The proposed algorithm could be applied for other desired numbers of experiments. Note that, as the number of experimental runs increases, the time needed for generating the maximum numbers of orthogonal arrays with the highest levels increases too.

Acknowledgements

The research was partly supported by UEFISCSU Romania through projects ID458/2007 and ID1051/2007.

References

  1. Ross, P.J. Taguchi Techniques for Quality Engineering; McGraw-Hill: New York, 1998. [Google Scholar]
  2. Czyzak, P.; Jaszkiewicz, A. Pareto simulated annealing – A metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis 1998, 7(1), 34–47. [Google Scholar] [CrossRef]
  3. Fisher, R.A. Statistical Methods for researcher Workers; Oliver and Boyd: London, UK, 1925. [Google Scholar]
  4. Ranjit, K.R. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; John Wiley & Sons: Hoboken, NJ, 2001. [Google Scholar]
  5. Fisher, R.A. The arrangement of field experiments. Jour. Min. Agr. Engl. 1926, 33, 503–513. [Google Scholar]
  6. Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization/UNIPUB, White Plain: Unipub/Kraus, NY, 1986. [Google Scholar]
  7. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; John Wiley & Sons: Hoboken, NJ, 2006. [Google Scholar]
  8. Taguchi, G.; Jugulum, R.; Taguchi, S. Computer-based Robust Engineering: Essentials for DFSS; ASQ Quality Press: Milwoukee, WI, 2004. [Google Scholar]
  9. Daneshvar, N.; Khataee, A.R.; Rasoulifard, M.H.; Pourhassan, M. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials 2007, 143(1-2), 214–219. [Google Scholar] [CrossRef] [PubMed]
  10. du Plessis, B.J.; de Villiers, G.H. The application of the Taguchi method in the evaluation of mechanical flotation in waste activated sludge thickening. Resources, Conservation and Recycling 2007, 50(2), 202–210. [Google Scholar] [CrossRef]
  11. Tasirin, S.M.; Kamarudin, S.K.; Ghani, J.A.; Lee, K.F. Optimization of drying parameters of bird's eye chilli in a fluidized bed dryer. Journal of Food Engineering 2007, 80(2), 695–700. [Google Scholar] [CrossRef]
  12. Wu, C.-H.; Chen, W.-S. Injection molding and injection compression molding of three-beam grating of DVD pickup lens. Sensors and Actuators A: Physical 2006, 125(2), 367–375. [Google Scholar] [CrossRef]
  13. Houng, J.-Y.; Liao, J.-H.; Wu, J.-Y.; Shen, S.-C.; Hsu, H.-F. Enhancement of asymmetric bioreduction of ethyl 4-chloro acetoacetate by the design of composition of culture medium and reaction conditions. Process Biochemistry 2007, 42(1), 1–7. [Google Scholar] [CrossRef]
  14. Romero-Villafranca, R.; Zúnica, L.; Romero-Zúnica, R. Ds-optimal experimental plans for robust parameter design. Journal of Statistical Planning and Inference 2007, 137(4), 1488–1495. [Google Scholar] [CrossRef]
  15. Elshennawy, A.K. Quality in the new age and the body of knowledge for quality engineers. Total Quality Management and Business Excellence 2004, 15(5-6), 603–614. [Google Scholar] [CrossRef]
  16. Ng, E.Y.K.; Ng, W.K. Parametric study of the biopotential equation for breast tumour identification using ANOVA and Taguchi method. Medical and Biological Engineering and Computing 2006, 44(1-2), 131–139. [Google Scholar] [CrossRef] [PubMed]
  17. Hedayat, A.S.; Sloane, N.J.A.; Stufken, J. Orthogonal Arrays: Theory and Applications; Springer-Verlag: New York, 1999. [Google Scholar]
  18. Fontani, S.; Niccolai, A.; Kapat, A.; Oliveri, R. Studies on the Maximization of Recombinant Helicobacter Pylori Neutrophil-Activating Protein Production in Escherichia Coli: Application of Taguchi Robust design and Response Surface Merhodology for Process Optimization. World Journal of Microbiology & Biotechnology 2003, 19, 711–717. [Google Scholar]
  19. del Alamo, J.; Fernandez, J.C.; Hernandez, M.; Nunez, Y.; Irusta, R.; Del Valle, J.L. Environmental optimisation of a hydro-moulding process. Journal of Cleaner Production 2004, 12, 153–157. [Google Scholar] [CrossRef]
  20. Kim, S.-T.; Park, M.-S.; Kim, H.-M. Systematic approach for the evaluation of the optimal fabrication conditions of a H2S gas sensor with Taguchi method. Sensors and Actuators B 2004, 102(2), 253–260. [Google Scholar] [CrossRef]
  21. Kim, K.D.; Choi, K.Y.; Kim, H.T. Experimental optimization of the formation of silver dendritic particles by electrochemical technique. Scripta Materialia 2005, 53, 571–575. [Google Scholar] [CrossRef]
  22. Lin, T.-S.; Wu, C.-F.; Hsieh, C.-T. Enhancement of water-repellent performance on functional coating by using the Taguchi method. Surface & Coatings Technology 2006, 200(18-19), 5253–5258. [Google Scholar]
  23. Trabelsi, K.; Rourou, S.; Loukil, H.; Majoul, S.; Kallel, H. Optimization of virus yield as a strategy to improve rabies vaccine production by Vero cells in a bioreactor. Journal of Biotechnology 2006, 121, 261–271. [Google Scholar] [CrossRef] [PubMed]
  24. Lee, H.-C.; Park, O.O. Round pinholes in indium-tin-oxide thin films on the glass substrates: a Taguchi method analysis and theoretical approach to their origins. Vacuum 2004, 72(4), 411–418. [Google Scholar] [CrossRef]
  25. Poon, G.K.K.; Williams, D.J.; Chin, K.S. Optimising the Lithographic Patterning Effect in an Acid Copper Electroplating Process. The International Journal of Advanced Manufacturing Technology 2000, 16, 881–888. [Google Scholar] [CrossRef]
  26. Rocak, D.; Kosec, M.; Degen, A. Ceramic suspension optimization using factorial design of experiments. Journal of the European Ceramic Society 2002, 22, 391–395. [Google Scholar] [CrossRef]
  27. Reddy, T.A.J.; Kumar, Y.R.; Rao, C.S.P. Determination of Optimum Process Parameters using Taguchi’s Approach to Improve the Quality of SLS Parts. In Proceeding of the 17th IASTED International Conference Modeling and Simulation, Montreal, Canada, 2006; pp. 228–233.
  28. Lin, T.-S. The Use of Reliability in the Taguchi Method for the Optimisation of the Polishing Ceramic Gauge Block. International Journal of Advanced Manufacturing Technology 2003, 22, 237–242. [Google Scholar] [CrossRef]
  29. Shaji, S.; Radhakrishnan, V. Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. Journal of Materials Processing Technology 2003, 141(1), 51–59. [Google Scholar] [CrossRef]
  30. Cho, M.H.; Bahadur, S.; Pogosian, A.K. Friction and wear studies using Taguchi method on polyphenylene sulfide filled with a complex mixture of MoS2, Al2O3, and other compounds. Wear 2005, 258, 1825–1835. [Google Scholar] [CrossRef]
  31. Chua, B.W.; Lu, L.; Lai, M.O.; Wong, G.H.L. Investigation of complex additives on the microstructure and properties of low-temperature sintered PZT using the Taguchi method. Journal of Alloys and Compounds 2005, 386, 303–310. [Google Scholar] [CrossRef]
  32. Fung, C.-P.; Kang, P.-C. Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. Journal of Materials Processing Technology 2005, 170(3), 602–610. [Google Scholar] [CrossRef]
  33. Ha, J.-L.; Kung, Y.-S.; Hu, S.-C.; Fung, R.-F. Optimal design of a micro-positioning Scott-Russell mechanism by Taguchi method. Sensors and Actuators A 2006, 125(2), 565–572. [Google Scholar] [CrossRef]
  34. Ting, J.-H.; Shiau, S.-H.; Chen, Y.-J.; Pan, F.-M.; Wong, H.; Pu, G.M.; Kung, C.-Y. Preparation and properties of sputtered nitrogen-doped cobalt silicide film. Thin Solid Films 2004, 468, 155–160. [Google Scholar]
  35. Alsaran, A.; Celik, A.; Celik, C. Determination of the optimum conditions for ion nitriding of AISI 5140 steel. Surface and Coatings Technology 2002, 160, 219–226. [Google Scholar] [CrossRef]
  36. Ali, N.; Neto, V.F.; Mei, S.; Cabral, G.; Kousar, Y.; Titus, E.; Ogwu, A.A.; Misra, D.S.; Gracio, J. Optimisation of the new time-modulated CVD process using the Taguchi method. Thin Slid Films 2004, 469-471, 154–160. [Google Scholar] [CrossRef]
  37. Tan, O.; Zaimoglu, A.S.; Hinislioglu, S.; Altun, S. Taguchi approach for optimization of the bleeding on cement-based grouts. Tunnelling and Underground Space Technology 2005, 20(2), 167–173. [Google Scholar] [CrossRef]
  38. Sahin, Y. The prediction of wear resistance model for the metal matrix composites. Wear 2005, 258, 1717–1722. [Google Scholar] [CrossRef]
  39. Cheng, C.-C.; Young, M.-S.; Chuang, C.-L.; Chang, C.-C. Fabrication optimization of carbon fiber electrode with Taguchi Method. Biosensors and Bioelectronics 2003, 18, 847–855. [Google Scholar] [CrossRef]
  40. Houng, J.-Y.; Hsu, H.-F.; Liu, Y.-H.; Wu, J.-Y. Applying the Taguchi robust design to the optimization of the asymmetric reduction of ethyl 4-chloro acetoacetate by bakers’ yeast. Journal of Biotechnology 2003, 100, 239–250. [Google Scholar]
  41. Oguz, E.; Keskinler, B.; Celik, C.; Celik, Z. Determination of the optimum conditions in the removal of Bomaplex Red CR-L dye from the textile wastewater using O3, H2O2, HCO3- and PAC. Journal of Hazardous Materials B 2006, 131, 66–72. [Google Scholar] [CrossRef] [PubMed]
  42. Yan, B.H.; Wang, C.C.; Liu, W.D.; Huang, F.Y. Machining Characteristics of Al2O3/6061Al Composite using Rotary EDM with a Disklike Electrode. International Journal of Advanced Manufacturing Technology 2000, 16, 322–333. [Google Scholar] [CrossRef]
  43. Yu, Y.-C.; Chen, X.-X.; Hung, T.-R.; Thibault, F. Optimization of Extrusion Blow Molding Processes Using Soft Computing and Taguchi’s Methos. Journal of Intelligent Manufacturing 2004, 15, 625–634. [Google Scholar] [CrossRef] [Green Version]
  44. Ming-Der, J.; Yih-Fong, T. Optimization Of Electron-Beam Surface Hardening Of Cast Iron For High Wear Resistance Using Taguchi Method. International Journal of Advanced Manufacturing Technology 2004, 24, 190–198. [Google Scholar] [CrossRef]
  45. Wu, D.H.; Tsai, Y.J.; Yen, Y.T. Robust design of quartz crystal microbalance using finite element and Taguchi method. Sensors and Actuators B 2003, 92(3), 337–344. [Google Scholar] [CrossRef]
  46. Liu, C.H.; Chen, C.-C.A.; Huang, J.-S. The polishing of molds and dies using a compliance tool holder mechanism. Journal of Materials Processing Technology 2005, 166, 230–236. [Google Scholar] [CrossRef]
  47. Tosun, N.; Cogun, C.; Tosun, G. A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. Journal of Materials Processing Technology 2004, 152(3), 316–322. [Google Scholar] [CrossRef]
  48. Ghani, J.A.; Choudhury, I.A.; Hassan, H.H. Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Processing Technology 2004, 145(1), 84–92. [Google Scholar] [CrossRef]
  49. Statistica; Statsoft Inc., V.6.0., 2001. http://www.statsoft.com accessed 20 April 2006.
  50. Sylvester, J.J. Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers. Philosophical Magazine 1867, 34, 461–475. [Google Scholar]
  51. Sloane, N.J.A. Table of Orthogonal Arrays of Strength 2 with up to 100 Runs. 2007. http://www.research.att.com/~njas/doc/cent4.html#T1 accessed 23 May 2007.
  52. Sloane, N.J.A.; Stufken, J. A linear programming bound for orthogonal arrays with mixed levels. Journal of Statistical Planning and Inference 1996, 56, 295–305. [Google Scholar] [CrossRef]
  53. Rains, E.M.; Sloane, N.J.A.; Stufken, J. The lattice of N-run orthogonal arrays. Journal of Statistical Planning and Inference 2002, 102(2), 477–500. [Google Scholar] [CrossRef] [Green Version]

Appendix

L4

Table A1. 42×21 scheme.
Table A1. 42×21 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(2)
1020
2101
3231
4310
Table A2. 23 scheme.
Table A2. 23 scheme.
Experimental runsFactor (levels)
A(2)B(2)C(2)
1010
2111
3001
4100

L6

Table A3. 61×32 scheme.
Table A3. 61×32 scheme.
Experimental runsFactor (levels)
A(6)B(3)C(3)
1010
2112
3201
4322
5420
6501
Table A4. 33 scheme.
Table A4. 33 scheme.
Experimental runsFactor (levels)
A(3)B(3)C(3)
1011
2102
3222
4011
5120
6200
Table A5. 32×21 scheme.
Table A5. 32×21 scheme.
Experimental runsFactor (levels)
A(3)B(3)C(2)
1110
2111
3200
4221
5020
6001

L8

Table A6. 44×23 scheme.
Table A6. 44×23 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(4)D(4)E(2)F(2)G(2)
11100011
20223111
32032010
43311110
52331001
63012101
71203000
80120100
Table A7. 42×25 scheme.
Table A7. 42×25 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(2)D(2)E(2)F(2)G(2)
11001111
22311110
32301001
41011000
50200100
63110101
73100010
80210011
Table A8. 27 scheme.
Table A8. 27 scheme.
Experimental runsFactor (levels)
A(2)B(2)C(2)D(2)E(2)F(2)G(2)
10111000
21110110
30100101
41101011
50010011
61011101
70001110
81000000
Table A9. 83×42×21 scheme.
Table A9. 83×42×21 scheme.
Experimental runsFactor (levels)
A(8)B(8)C(8)D(4)E(4)F(2)
1111011
2045130
3267201
4333320
5672010
6726131
7504200
8450321
Table A10. 81×43×22 scheme.
Table A10. 81×43×22 scheme.
Experimental runsFactor (levels)
A(8)B(4)C(4)D(4)E(2)F(2)
1111001
2010210
3402301
4503110
5621000
6720211
7332300
8233111
Table A11. 81×41×24 scheme.
Table A11. 81×41×24 scheme.
Experimental runsFactor (levels)
A(8)B(4)C(2)D(2)E(2)F(2)
1110111
2011100
3400010
4501001
5620101
6721110
7330000
8231011
Table A12. 46 scheme.
Table A12. 46 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(4)D(4)E(4)F(4)
1000222
2033211
3103021
4130012
5211300
6222333
7312103
8321130
Table A13. 83×22 scheme.
Table A13. 83×22 scheme.
Experimental runsFactor (levels)
A(8)B(8)C(8)D(2)E(2)
111101
204511
366601
473211
527300
632710
750400
845010
Table A14. 82×23 scheme.
Table A14. 82×23 scheme.
Experimental runsFactor (levels)
A(8)B(8)C(2)D(2)E(2)
110111
251100
372010
433001
504000
645011
766101
827110
Table A15. 81×24 scheme.
Table A15. 81×24 scheme.
Experimental runsFactor (levels)
A(8)B(2)C(2)D(2)E(2)
100000
210111
321011
431100
541101
651010
760110
870001
Table A16. 84 scheme.
Table A16. 84 scheme.
Experimental runsFactor (levels)
A(8)B(8)C(8)D(8)
10034
21702
32666
43150
54573
65217
76345
87421

L9

Table A17. 35 scheme.
Table A17. 35 scheme.
Experimental runsFactor (levels)
A(3)B(3)C(3)D(3)E(3)
100000
200221
302022
411202
512101
612210
720112
821011
921120
Table A18. 94 scheme.
Table A18. 94 scheme.
Experimental runsFactor (levels)
A(9)B(9)C(9)D(9)
10075
21804
32111
43786
54660
65537
76228
87453
98342
Table A19. 92×32 scheme.
Table A19. 92×32 scheme.
Experimental runsFactor (levels)
A(9)B(9)C(3)D(3)
10110
21202
32421
43722
54811
65600
76510
87302
98021
Table A20. 91×33 scheme.
Table A20. 91×33 scheme.
Experimental runsFactor (levels)
A(9)B(3)C(3)D(3)
10111
21100
32022
43102
54221
65210
76020
87212
98001

L10

Table A21. 101×55 scheme.
Table A21. 101×55 scheme.
Experimental runsFactor (levels)
A(10)B(5)C(5)D(5)E(5)F(5)
1000022
2104422
3244103
4340310
5431434
6533041
7623241
8721234
9812310
10912103
Table A22. 52×21 scheme.
Table A22. 52×21 scheme.
Experimental runsFactor (levels)
A(5)B(5)C(2)
1001
2100
3211
4310
5421
6040
7141
8230
9331
10420

L12

Table A23. 211 scheme.
Table A23. 211 scheme.
Experimental runsFactor (levels)
A(2)B(2)C(2)D(2)E(2)F(2)G(2)H(2)I(2)J(2)K(2)
101111100000
211110011100
301100010011
411011001011
501000101110
611001110101
700101001101
810110100111
900011010110
1010101111010
1100010111001
1210000000000
Table A24. 41×29 scheme.
Table A24. 41×29 scheme.
Experimental runsFactor (levels)
A(4)B(2)C(2)D(2)E(2)F(2)G(2)H(2)I(2)J(2)
10011111000
20111100111
33011000100
43110110010
51010001011
62110011101
72001010011
83101101001
91000110101
101101011110
112000101110
120100000000
Table A25. 42×27 scheme.
Table A25. 42×27 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(2)D(2)E(2)F(2)G(2)H(2)I(2)
1000111110
2111111001
3220110001
4231101100
5130100010
6301100111
7310010100
8321011010
9120001101
10031010111
11210001011
12001000000
Table A26. 44×23 scheme.
Table A26. 44×23 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(4)D(4)E(2)F(2)G(2)
11112011
21112111
30220011
41233110
53021010
63301110
73202001
82023101
90313000
102330101
112131000
120000100
Table A27. 43×24 scheme.
Table A27. 43×24 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(4)D(2)E(2)F(2)G(2)
11100111
21131111
30210110
42021101
53210100
62321100
73030010
83301011
90330001
101221010
112110001
120001000
Table A28. 37 scheme.
Table A28. 37 scheme.
Experimental runsFactor (levels)
A(3)B(3)C(3)D(3)E(3)F(3)G(3)
10111110
21111021
32111112
40000222
51111201
62022112
70022110
81202021
92220220
100220002
111202201
122000000
Table A29. 34×22 scheme.
Table A29. 34×22 scheme.
Experimental runsFactor (levels)
A(3)B(3)C(3)D(3)E(2)F(2)
1111101
2111111
3111001
4111011
5002201
6220211
7020100
8022210
9200200
10202110
11222000
12000010
Table A30. 33×23 scheme.
Table A30. 33×23 scheme.
Experimental runsFactor (levels)
A(3)B(3)C(3)D(2)E(2)F(2)
1111011
2110111
3002011
4111110
5110010
6222110
7220001
8021101
9022000
10202101
11201000
12000100
Table A31. 43×31×22 scheme.
Table A31. 43×31×22 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(4)D(3)E(2)F(2)
1111101
2111111
3102201
4032211
5320001
6323011
7033000
8221110
9203100
10312210
11230200
12000010
Table A32. 42×31×23 scheme.
Table A32. 42×31×23 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(3)D(2)E(2)F(2)
1111011
2112111
3020011
4121110
5302010
6330110
7320001
8201101
9032000
10232101
11211000
12000100
Table A33. 46 scheme.
Table A33. 46 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(4)D(4)E(4)F(4)
1000002
2100330
3203031
4311313
5013302
6130133
7213122
8321001
9032121
10132210
11222223
12321210
Table A34. 121×24 scheme.
Table A34. 121×24 scheme.
Experimental runsFactor (levels)
A(12)B(2)C(2)D(2)E(2)
101110
211001
320100
430010
540011
651001
760101
870111
981100
1091010
11101111
12110000
Table A35. 65 scheme.
Table A35. 65 scheme.
Experimental runsFactor (levels)
A(6)B(6)C(6)D(6)E(6)
100003
210550
321054
431502
542415
652243
705424
815120
924345
1034331
1143232
1253111
Table A36. 42×32×21 scheme.
Table A36. 42×32×21 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(3)D(3)E(2)
111011
211111
312210
402001
530110
632201
733000
803120
923221
1021020
1120121
1200200
Table A37. 41×32×22 scheme.
Table A37. 41×32×22 scheme.
Experimental runsFactor (levels)
A(4)B(3)C(3)D(2)E(2)
111101
221111
311101
421111
530001
602211
710200
820210
902000
1032010
1132200
1200010
Table A38. 31×24 scheme.
Table A38. 31×24 scheme.
Experimental runsFactor (levels)
A(3)B(2)C(2)D(2)E(2)
110111
211111
300110
401101
520100
621100
710010
821011
900001
1011010
1120001
1201000
Table A39. 124 scheme.
Table A39. 124 scheme.
Experimental runsFactor (levels)
A(12)B(12)C(12)D(12)
10000
2111011
3211110
4310111
54927
65296
76875
87782
98654
109568
1110349
1211433
Table A40. 121×62 scheme.
Table A40. 121×62 scheme.
Experimental runsFactor (levels)
A(12)B(6)C(6)
1011
2111
3205
4345
5452
6550
7642
8733
9834
10924
111023
121100

L14

Table A41. 75×21 scheme.
Table A41. 75×21 scheme.
Experimental runsFactor (levels)
B(7)C(7)D(7)E(7)F(7)A(2)
1000050
2006411
3160600
4161251
5214520
6255021
7356130
8344641
9445360
10412561
11523210
12532331
13633440
14621101
Table A42. 141×74 scheme.
Table A42. 141×74 scheme.
Experimental runsFactor (levels)
A(14)B(7)C(7)D(7)E(7)
100000
210556
326064
431543
546106
655614
765631
874360
983411
1094432
11103152
12111245
13122325
14132223

L15

Table A43. 54×33 scheme.
Table A43. 54×33 scheme.
Experimental runsFactor (levels)
A(5)B(5)C(5)D(5)E(3)F(3)G(3)H(3)
100000001
210022220
320430122
431431000
541042012
601422211
714141202
822311102
932130211
1042311121
1104240020
1214202022
1323322100
1433200211
1543111110
Table A44. 151×36 scheme.
Table A44. 151×36 scheme.
Experimental runsFactor (levels)
A(15)B(3)C(3)D(3)E(3)F(3)G(3)
10000011
21002101
32020221
43222020
54220112
65202210
76211002
87201222
98022211
109121100
1110111011
1211111202
1312110100
1413100120
1514012022
Table A45. 55×32 scheme.
Table A45. 55×32 scheme.
Experimental runsFactor (levels)
A(5)B(5)C(5)D(5)E(5)F(3)G(3)
10000000
21002322
32043401
43143020
54104410
60142312
71414211
82231121
93213022
104231102
110424101
121420421
132332210
143320310
154311202
Table A46. 52×35 scheme.
Table A46. 52×35 scheme.
Experimental runsFactor (levels)
A(5)B(5)C(3)D(3)E(3)F(3)G(3)
10000000
21000222
32022002
43102112
54120020
60122220
71402011
82221201
93212110
104211122
110420112
121411021
132311201
143301210
154310101
Table A47. 51×36 scheme.
Table A47. 51×36 scheme.
Experimental runsFactor (levels)
A(5)B(3)C(3)D(3)E(3)F(3)G(3)
10000000
21002211
32000222
43022002
54020020
60122121
71121200
82120212
93102012
104112210
110211021
121211101
132211121
143210102
154201110
Table A48. 37 scheme.
Table A48. 37 scheme.
Experimental runsFactor (levels)
A(3)B(3)C(3)D(3)E(3)F(3)G(3)
10000001
21000220
32002012
40022021
51020201
62102201
70122202
81112120
92120122
100201222
111210012
122121110
130211110
141211000
152211111
Table A49. 151×55 scheme.
Table A49. 151×55 scheme.
Experimental runsFactor (levels)
A(15)B(5)C(5)D(5)E(5)F(5)
1000000
2104333
3202334
4340421
5440143
6544004
7634030
8733322
9832412
10923420
111022141
121121204
131213211
141311212
151411143
Table A50. 56 scheme.
Table A50. 56 scheme.
Experimental runsFactor (levels)
A(5)B(5)C(5)D(5)E(5)F(5)
1000000
2100432
3204043
4314003
5410244
6014432
7141124
8223411
9321303
10423311
11042214
12142140
13233322
14332130
15431221
Table A51. 53×33 scheme.
Table A51. 53×33 scheme.
Experimental runsFactor (levels)
A(5)B(5)C(5)D(3)E(3)F(3)
1000000
2100222
3204002
4314020
5410210
6014221
7141020
8223201
9321012
10423121
11042112
12142111
13233200
14332101
15431112

L16

Table A52. 215 scheme.
Table A52. 215 scheme.
Experimental runsFactor (levels)
A(2)B(2)C(2)D(2)E(2)F(2)G(2)H(2)I(2)J(2)K(2)L(2)M(2)N(2)O(2)
1011111110000000
2111110001111000
3011100001000111
4111001100110110
5010011000101101
6110101010011011
7010000111110001
8110010111001110
9001010100011011
10101100110101101
11001001011101010
12101011011010101
13000110010110110
14100111101100011
15000101101011100
16100000000000000
Table A53. 41×213 scheme.
Table A53. 41×213 scheme.
Experimental runsFactor (levels)
A(4)B(2)C(2)D(2)E(2)F(2)G(2)H(2)I(2)J(2)K(2)L(2)M(2)N(2)
100000000000000
210000001111111
320001110001111
430001111110000
500110110110011
610110111001100
720111000111100
830111001000011
901011011010101
1011011010101010
1121010101011010
1231010100100101
1301101101100110
1411101100011001
1521100011101001
1631100010010110
Table A54. 81×212 scheme.
Table A54. 81×212 scheme.
Experimental runsFactor (levels)
A(8)B(2)C(2)D(2)E(2)F(2)G(2)H(2)I(2)J(2)K(2)L(2)M(2)
10000000000000
21000001111111
32001110001111
43001111110000
54010110110011
65010111001100
76011000111100
87011001000011
90111011010101
101111010101010
112110101011010
123110100100101
134101101100110
145101100011001
156100011101001
167100010010110
Table A55. 42×211 scheme.
Table A55. 42×211 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(2)D(2)E(2)F(2)G(2)H(2)I(2)J(2)K(2)L(2)M(2)
10000000000000
21000001111111
32001110001111
43001111110000
50110110110011
61110111001100
72111000111100
83111001000011
90211011010101
101211010101010
112210101011010
123210100100101
130301101100110
141301100011001
152300011101001
163300010010110
Table A56. 161×211 scheme.
Table A56. 161×211 scheme.
Experimental runsFactor (levels)
A(16)B(2)C(2)D(2)E(2)F(2)G(2)H(2)I(2)J(2)K(2)L(2)
1000000000000
2100001111111
3201110001111
4301111110000
5410110110011
6510111001100
7611000111100
8711001000011
9811011010101
10911010101010
111010101011010
121110100100101
131201101100110
141301100011001
151400011101001
161500010010110
Table A57. 161×81×28 scheme.
Table A57. 161×81×28 scheme.
Experimental runsFactor (levels)
A(16)B(8)C(2)D(2)E(2)F(2)G(2)H(2)I(2)J(2)
10000000000
21000111111
32101000111
43111111000
54211011011
65211100100
76310101101
87310010010
98700011100
109710100011
1110601101010
1211611010101
1312501110110
1413501001001
1514400110001
1615410001110
Table A58. 49 scheme.
Table A58. 49 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(4)D(4)E(4)F(4)G(4)H(4)I(4)
1000000022
2100032302
3200323130
4303200110
5013203323
6113130331
7213113102
8312231123
9022321002
10122133010
11220302311
12321221223
13031320211
14132012230
15231112033
16331011201
Table A59. 43×26 scheme.
Table A59. 43×26 scheme.
Experimental runsFactor (levels)
A(4)B(4)C(4)D(2)E(2)F(2)G(2)H(2)I(2)
1000000000
2100011111
3203000011
4302101101
5012110110
6111101010
7211110101
8312110000
9023111011
10121011100
11223011000
12322001110
13033000101
14130101001
15231100110
16330010011
Table A60. 87 scheme.
Table A60. 87 scheme.
Experimental runsFactor (levels)
A(8)B(8)C(8)D(8)E(8)F(8)G(8)
10000003
21007774
32170745
43177053
54261541
65266124
76316416
87335520
90755402
101734357
112654632
123613361
134543237
145522160
156441276
167422615
Table A61. 165 scheme.
Table A61. 165 scheme.
Experimental runsFactor (levels)
A(16)B(16)C(16)D(16)E(16)
100000
21113914
32212138
43151115
54142153
65131521
76121487
871131410
981011112
109341212
111099411
1211810313
13127779
14134865
151465104
16155656
Table A62. 162×23 scheme.
Table A62. 162×23 scheme.
Experimental runsFactor (levels)
A(16)B(16)C(2)D(2)E(2)
100000
2113011
3212101
431011
542100
6515010
â7614100
873111
9811101
1094110
11109110
121110010
13127001
14138001
15145111
16156000

Share and Cite

MDPI and ACS Style

Bolboacă, S.D.; Jäntschi, L. Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16. Entropy 2007, 9, 198-232. https://doi.org/10.3390/e9040198

AMA Style

Bolboacă SD, Jäntschi L. Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16. Entropy. 2007; 9(4):198-232. https://doi.org/10.3390/e9040198

Chicago/Turabian Style

Bolboacă, Sorana D., and Lorentz Jäntschi. 2007. "Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16" Entropy 9, no. 4: 198-232. https://doi.org/10.3390/e9040198

APA Style

Bolboacă, S. D., & Jäntschi, L. (2007). Design of Experiments: Useful Orthogonal Arrays for Number of Experiments from 4 to 16. Entropy, 9(4), 198-232. https://doi.org/10.3390/e9040198

Article Metrics

Back to TopTop