Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives
Abstract
:1. Introduction
Stimulus | Template | Monomer and cross-linker | Form of MIPs | Reference |
---|---|---|---|---|
Thermo-responsive | Lysozyme | NIPAAm, AA, DMAPMA, MBAAm | Particle | [24] |
NIPAm, MAA, AAm, MBAA | Core-shell | [33,34] | ||
NIPAm, VBIDA, AAm, MBAA | Bulk | [35] | ||
2,4-D | NIPAAm, 4-VP, EGDMA | Particle | [36] | |
RGDS Peptide | NIPAAm, AAm, DMAPMA, MBAA | Hydrogel layers | [37] | |
Propranolol | NIPAAm, MPABA, EGDMA | Particle with brush | [38] | |
Curcuminoids | NIPAAm, 4-VP, EGDMA | Core-shell | [39] | |
Sulfamethazine | NIPAm, AAm, EGDMA | Core-shell | [40] | |
CFX | NIPAm, MAA, EGDMA | Core-shell | [41] | |
2,4,5-Trichlorophenol | NIPAm, MAA, EGDMA | Core-shell | [42] | |
4-Amino pyridine | NIPAm, MAA, EGDMA | Hydrogel | [43] | |
Cu(II) ion | NIPAm, VBEDA,MBAA | Hydrogel | [44] | |
DBTS | Chitosan, Glutaraldehyde | hydrogel | [45] | |
Cisplatin | HEMA, MAA, MBAA | Hydrogels | [46] | |
BSA | TBA, AAm, MA, MBAA | Hydrogels | [47] | |
AMPS, NIPAm, AAm | Hydrogel | [48] | ||
DMAPMA, NiPAm, MBAA | Bulk | [49] | ||
Ca2+ or Pb2+ | NIPAm, MAA, MBAA | Gel | [50] | |
Atrial natriuretic peptide | NIPAm, MAA, MBAA | Particle | [51] | |
Cyt c or Lys | NIPAm, MAA, AAm, MBAA | Bulk | [52] | |
Adenine | NIPAm, MAA, EGDMA | Bulk | [53] | |
p-Nitrophenyl phosphate | NPP, DVB | Bulk | [54] | |
BHb | NIPAm, MBA | Core-shell | [55] | |
Sulfadiazine | NIPAm, EGDMA | Core-shell | [56] | |
Dopamine | MAA, AAM, MBAA | Particle | [57] | |
pH-responsive | Propranolol | NIPAm, DMAEMA, EGDMA | Particle with brush | [58] |
DXP | HEMA, DMAEMA, EGDMA | Particle | [59] | |
(S)-omeprazole | HEMA, PCL-T, EGDMA | Particle | [60] | |
Bisphenol-A | AAc, acryloylamylose, MBAA | Powders | [61] | |
PES, MBAA | Particle | [62] | ||
MAA, EGDMA | Layer | [63] | ||
HVA | NIPAM, 4-VP, hemin, AAm, EGDMA | Particle | [64] | |
Diclofenac | MAA, MAAm, 4-VP, EGDMA | Bulk | [65] | |
Insulin | MAA, PEG, MBA | Bulk | [66] | |
Photo-responsive | Caffeine | MPABA, TRIM | Bulk | [67] |
Bis(TBA)-N-Z-l-Glutamate | Di(ureidoethylenemethacrylate)azobenzene, EGDMA | Bulk | [68] | |
Caffeine or theophylline | MPABA, 4-(dimethylamino)pyridine, triethylamine, TRIM | bulk | [69] | |
Paracetamol | MAPASA, MBAA | Bulk | [70] | |
1,3,5-Benzenetriol | MAPASA, TTT | Bulk | [71] | |
Porphyrin | Azobenzene, DVB, Styrene | Bulk | [26] | |
Propranolol | NIPAAm, MPABA, EGDMA | Particle with brush | [38] | |
2,4-D | DCPA-AZO-TESP, TEOS | Core-shell | [72] | |
MAzoPy, EGDMA | Particle | [73,74] | ||
4-((4-(3-(trimethoxysilyl) propoxy) phenyl) diazenyl) phenyl 2-(2,4-dichlorophenoxy)acetate, TEOS | Bulk | [75] | ||
4-HA | PES/PES-N2-NH2 | Microfiber | [76] | |
Ibuprofen | Azobenzene, EGDMA | Core-shell | [77] | |
BPPO-AZO-TPPSP, TEOS | Bulk | [78] | ||
Guanine | MAPDIA, TEAMA | Bulk | [79] | |
PAF | MANFAB | Bulk | [80] | |
BPA | MAPASA, EGDMA | Core-shell | [81] | |
DA | PhAAAn, TEGDA, EGDMA | Membrane | [82,83] | |
Biomolecule-responsive | Cyt C or Lys | NIPAm, MAA, AAm, MBAA | Bulk | [52] |
Hydrocortisone | HEMA, EGDMA | Bulk | [84] | |
AFP | NSA, AAm, MBAA | Particle | [49] | |
acryloyl-lectin, AAm, MBAA | Hydrogel | [85] | ||
Thrombin | AM, MBAA | Hydrogel | [86] | |
dl-Norephedrine Hydrochloride or dl-Adrenaline hydrochloride | NIPAm, AAc, MBAA | Hydrogel | [87] | |
Ion-responsive | BSA | DMAPMA, NiPAm, MBAA | Bulk | [88] |
Proton | NIPAm, AAc, MBAA | Particle | [89] |
2. Thermo-Responsive Molecularly Imprinted Polymers
3. pH-Responsive Molecularly Imprinted Polymers
4. Photo-Responsive Molecularly Imprinted Polymers
5. Biomolecule-Responsive Molecularly Imprinted Polymers
6. Ion-Responsive Molecularly Imprinted Polymers
7. Conclusions
Supplementary Information
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
References
- Kirby, A.J. Enzyme mechanisms, models, and mimics. Angew. Chem. Int. Ed. Engl. 1996, 35, 706–724. [Google Scholar] [CrossRef]
- Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A. Molecular imprinting science and technology: A survey of the literature for the years 2004–2011. J. Mol. Recognit. 2014, 27, 297–401. [Google Scholar] [CrossRef]
- Haupt, K. Imprinted polymers—Tailor-made mimics of antibodies and receptors. Chem. Commun. 2003, 171–178. [Google Scholar] [CrossRef]
- Haupt, K. Biomaterials: Plastic antibodies. Nat. Mater. 2010, 9, 612–614. [Google Scholar] [CrossRef]
- Kawamura, A.; Kiguchi, T.; Nishihata, T.; Uragami, T.; Miyata, T. Target molecule-responsive hydrogels designed via molecular imprinting using bisphenol A as a template. Chem. Commun. 2014, 50, 11101–11103. [Google Scholar] [CrossRef]
- Wu, B.; Peisley, A.; Tetrault, D.; Li, Z.; Egelman, E.H.; Magor, K.E.; Walz, T.; Penczek, P.A.; Hur, S. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 2014, 55, 511–523. [Google Scholar] [CrossRef]
- Emgenbroich, M.; Borrelli, C.; Shinde, S.; Lazraq, I.; Vilela, F.; Hall, A.J.; Oxelbark, J.; de Lorenzi, E.; Courtois, J.; Simanova, A. A phosphotyrosine—Imprinted polymer receptor for the recognition of tyrosine phosphorylated peptides. Chem. Eur. J. 2008, 14, 9516–9529. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, L.; Mosbach, K. Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J. Mol. Recognit. 2006, 19, 248–259. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N. Molecular imprinting for high-added value metals: An overview of recent environmental applications. Adv. Mat. Sci. Eng. 2014, 2014, 932637. [Google Scholar] [CrossRef]
- Rossetti, C.; Abdel Qader, A.; Halvorsen, T.G.; Sellergren, B.R.; Reubsaet, L. Antibody-free biomarker determination: Exploring molecularly imprinted polymers for pro-gastrin releasing peptide. Anal. Chem. 2014, 86, 12291–12298. [Google Scholar] [CrossRef]
- Kunath, S.; Panagiotopoulou, M.; Maximilien, J.; Marchyk, N.; Sänger, J.; Haupt, K. Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv. Healthcare Mat. 2015, 4, 1322–1326. [Google Scholar] [CrossRef]
- Sellergren, B. Molecularly imprinted polymers: Shaping enzyme inhibitors. Nat. Chem. 2010, 2, 7–8. [Google Scholar] [CrossRef]
- Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef]
- Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1–28. [Google Scholar] [CrossRef]
- Omranipour, H.; Sajadi, T.S.; Kowsari, R.; Rad, M.; Mohajeri, S. Brimonidine imprinted hydrogels and evaluation of their binding and releasing properties as new ocular drug delivery systems. Curr. Drug Deliv. 2015. [Google Scholar] [CrossRef]
- Hilt, J.Z.; Byrne, M.E. Configurational biomimesis in drug delivery: Molecular imprinting of biologically significant molecules. Adv. Drug Deliv. Rev. 2004, 56, 1599–1620. [Google Scholar] [CrossRef]
- Komiyama, M.; Takeuchi, T.; Mukawa, T.; Asanuma, H. Molecular imprinting: From fundamentals to applications. Mol. Impr. 2003, 1, 148. [Google Scholar]
- Krupadam, R.J.; Venkatesh, A.; Piletsky, S.A. Molecularly imprinted polymer receptors for nicotine recognition in biological systems. Mol. Impr. 2013, 1, 27–34. [Google Scholar] [CrossRef]
- Alarcon, C.D.L.H.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276–285. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M. Emerging applications of stimuli-responsive polymer materials. Nat. Mat. 2010, 9, 101–113. [Google Scholar] [CrossRef]
- Ahn, S.-K.; Kasi, R.M.; Kim, S.-C.; Sharma, N.; Zhou, Y. Stimuli-responsive polymer gels. Soft Matter 2008, 4, 1151–1157. [Google Scholar] [CrossRef]
- Ge, Y.; Butler, B.; Mirza, F.; Habib-Ullah, S.; Fei, D. Smart molecularly imprinted polymers: Recent developments and applications. Macromol. Rapid Commun. 2013, 34, 903–915. [Google Scholar] [CrossRef]
- Pan, G.; Guo, Q.; Cao, C.; Yang, H.; Li, B. Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter 2013, 9, 3840–3850. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Wang, P.; Du, S. Coordinate bonding strategy for molecularly imprinted hydrogels: Toward pH-responsive doxorubicin delivery. J. Pharm. Stat. 2014, 103, 643–651. [Google Scholar] [CrossRef]
- Takeuchi, T.; Akeda, K.; Murakami, S.; Shinmori, H.; Inoue, S.; Lee, W.-S.; Hishiya, T. Photoresponsive porphyrin-imprinted polymers prepared using a novel functional monomer having diaminopyridine and azobenzene moieties. Org. Biomol. Chem. 2007, 5, 2368–2374. [Google Scholar] [CrossRef]
- Wu, H.G.; Ju, X.J.; Xie, R.; Liu, Y.M.; Deng, J.G.; Niu, C.H.; Chu, L.Y. A novel ion-imprinted hydrogel for recognition of potassium ions with rapid response. Polym. Adv. Technol. 2011, 22, 1389–1394. [Google Scholar] [CrossRef]
- Shiraki, Y.; Tsuruta, K.; Morimoto, J.; Ohba, C.; Kawamura, A.; Yoshida, R.; Kawano, R.; Uragami, T.; Miyata, T. Preparation of molecule-responsive microsized hydrogels via photopolymerization for smart microchannel microvalves. Macromol. Rapid Commun. 2015, 36, 515–519. [Google Scholar] [CrossRef]
- Puoci, F.; Iemma, F.; Picci, N. Stimuli-responsive molecularly imprinted polymers for drug delivery: A review. Curr. Drug Deliv. 2008, 5, 85–96. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H.; Zheng, X.; Chen, L. Stimuli-responsive molecularly imprinted polymers: Versatile functional materials. J. Mater. Chem. C 2013, 1, 4406–4422. [Google Scholar] [CrossRef]
- Adrus, N.; Ulbricht, M. Molecularly imprinted stimuli-responsive hydrogels for protein recognition. Polymer 2012, 53, 4359–4366. [Google Scholar] [CrossRef]
- Ying, X.; Qi, L.; Li, X.; Zhang, W.; Cheng, G. Stimuli-responsive recognition of BSA-imprinted poly vinyl acetate grafted calcium alginate core-shell hydrogel microspheres. J. Appl. Polym. Sci. 2013, 127, 3898–3909. [Google Scholar] [CrossRef]
- Qin, L.; He, X.-W.; Yuan, X.; Li, W.-Y.; Zhang, Y.-K. Molecularly imprinted beads with double thermosensitive gates for selective recognition of proteins. Anal. Bioanal. Chem. 2011, 399, 3375–3385. [Google Scholar] [CrossRef]
- Qin, L.; He, X.W.; Jia, M.; Li, W.Y.; Zhang, Y.K. A thermosensitive monolithic column as an artificial antibody for the on-line selective separation of the protein. Chem. Euro. J. 2011, 17, 1696–1704. [Google Scholar] [CrossRef]
- Qin, L.; He, X.-W.; Zhang, W.; Li, W.-Y.; Zhang, Y.-K. Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction. Anal. Chem. 2009, 81, 7206–7216. [Google Scholar] [CrossRef]
- Pan, G.; Zhang, Y.; Guo, X.; Li, C.; Zhang, H. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens. Bioelectron. 2010, 26, 976–982. [Google Scholar] [CrossRef]
- Pan, G.; Guo, Q.; Ma, Y.; Yang, H.; Li, B. Thermo-responsive hydrogel layers imprinted with RGDs peptide: A system for harvesting cell sheets. Angew. Chem. 2013, 125, 7045–7049. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Zhao, M.; Guo, X.; Zhang, H. Narrowly dispersed molecularly imprinted polymer microspheres with photo- and thermo-responsive template binding properties in pure aqueous media by RAFT polymerization. Mol. Impr. 2012, 1, 3–16. [Google Scholar] [CrossRef]
- You, Q.; Zhang, Y.; Zhang, Q.; Guo, J.; Huang, W.; Shi, S.; Chen, X. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids. J. Chromatogr. A 2014, 1354, 1–8. [Google Scholar] [CrossRef]
- Xu, L.; Pan, J.; Dai, J.; Li, X.; Hang, H.; Cao, Z.; Yan, Y. Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. J. Hazard. Mater. 2012, 233, 48–56. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, L.; Long, Y.; Xu, L.; Wang, L.; Xu, C. Preparation and evaluation of superparamagnetic surface molecularly imprinted polymer nanoparticles for selective extraction of bisphenol A in packed food. Anal. Method. 2011, 3, 1737–1744. [Google Scholar] [CrossRef]
- Pan, J.; Wang, B.; Dai, J.; Dai, X.; Hang, H.; Ou, H.; Yan, Y. Selective recognition of 2,4,5-trichlorophenol by temperature responsive and magnetic molecularly imprinted polymers based on halloysite nanotubes. J. Mater. Chem. 2012, 22, 3360–3369. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, T.; Du, Z.; Wei, Z.; Zhang, J. Recognition ability of temperature responsive molecularly imprinted polymer hydrogels. Soft Matter 2011, 7, 1986–1993. [Google Scholar] [CrossRef]
- Tokuyama, H.; Kanazawa, R.; Sakohara, S. Equilibrium and kinetics for temperature swing adsorption of a target metal on molecular imprinted thermosensitive gel adsorbents. Sep. Purif. Technol. 2005, 44, 152–159. [Google Scholar] [CrossRef]
- Aburto, J.; Le Borgne, S. Selective adsorption of dibenzothiophene sulfone by an imprinted and stimuli-responsive chitosan hydrogel. Macromolecules 2004, 37, 2938–2943. [Google Scholar] [CrossRef]
- Singh, B.; Chauhan, N.; Sharma, V. Design of molecular imprinted hydrogels for controlled release of cisplatin: Evaluation of network density of hydrogels. Ind. Eng. Chem. Res. 2011, 50, 13742–13751. [Google Scholar] [CrossRef]
- Demirel, G.; Özçetin, G.; Turan, E.; Çaykara, T. pH/temperature–sensitive imprinted ionic poly (N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin. Macromol. Biosci. 2005, 5, 1032–1037. [Google Scholar] [CrossRef]
- Ran, D.; Wang, Y.; Jia, X.; Nie, C. Bovine serum albumin recognition via thermosensitive molecular imprinted macroporous hydrogels prepared at two different temperatures. Anal. Chim. Acta 2012, 723, 45–53. [Google Scholar] [CrossRef]
- Miyata, T.; Jige, M.; Nakaminami, T.; Uragami, T. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc. Natl. Acad. Sci. USA 2006, 103, 1190–1193. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; Guney, O.; Oya, T.; Sakai, Y.; Kobayashi, M.; Enoki, T.; Takeoka, Y.; Ishibashi, T.; Kuroda, K.; Tanaka, K. Reversible adsorption of calcium ions by imprinted temperature sensitive gels. J. Chem. Phys. 2001, 114, 2812–2816. [Google Scholar] [CrossRef]
- Wang, C.; Howell, M.; Raulji, P.; Davis, Y.; Mohapatra, S. Preparation and characterization of molecularly imprinted polymeric nanoparticles for atrial natriuretic peptide (ANP). Adv. Funct. Mater. 2011, 21, 4423–4429. [Google Scholar] [CrossRef]
- Chen, Z.; Hua, Z.; Xu, L.; Huang, Y.; Zhao, M.; Li, Y. Protein-responsive imprinted polymers with specific shrinking and rebinding. J. Mol. Recognit. 2008, 21, 71–77. [Google Scholar] [CrossRef]
- Li, S.; Pilla, S.; Gong, S. Modulated molecular recognition by a temperature-sensitive molecularly-imprinted polymer. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2352–2360. [Google Scholar] [CrossRef]
- Li, S.; Ge, Y.; Tiwari, A.; Wang, S.; Turner, A.P.; Piletsky, S.A. “On/off”-switchable catalysis by a smart enzyme-like imprinted polymer. J. Catal. 2011, 278, 173–180. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Thermo-sensitive imprinted polymer coating CdTe quantum dots for target protein specific recognition. Chem. Commun. 2012, 48, 1757–1759. [Google Scholar] [CrossRef]
- Xu, L.; Pan, J.; Xia, Q.; Shi, F.; Dai, J.; Wei, X.; Yan, Y. Composites of silica and molecularly imprinted polymers for degradation of sulfadiazine. J. Phys. Chem. C 2012, 116, 25309–25318. [Google Scholar] [CrossRef]
- Suedee, R.; Seechamnanturakit, V.; Canyuk, B.; Ovatlarnporn, C.; Martin, G.P. Temperature sensitive dopamine-imprinted (N,N-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine. J. Chromatogr. A 2006, 1114, 239–249. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Zhao, M.; Guo, X.; Zhang, H. Efficient synthesis of narrowly dispersed molecularly imprinted polymer microspheres with multiple stimuli-responsive template binding properties in aqueous media. Chem. Commun. 2012, 48, 6217–6219. [Google Scholar] [CrossRef]
- Wang, C.; Javadi, A.; Ghaffari, M.; Gong, S. A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors. Biomaterials 2010, 31, 4944–4951. [Google Scholar] [CrossRef]
- Suedee, R.; Jantarat, C.; Lindner, W.; Viernstein, H.; Songkro, S.; Srichana, T. Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. J. Control. Release 2010, 142, 122–131. [Google Scholar] [CrossRef]
- Kanekiyo, Y.; Naganawa, R.; Tao, H. pH-Responsive molecularly imprinted polymers. Angew. Chem. Int. Ed. 2003, 42, 3014–3016. [Google Scholar] [CrossRef]
- Zhao, W.; Fang, B.; Li, N.; Nie, S.; Wei, Q.; Zhao, C. Fabrication of pH-responsive molecularly imprinted polyethersulfone particles for bisphenol-A uptake. J. Appl. Polym.Sci. 2009, 113, 916–921. [Google Scholar] [CrossRef]
- Griffete, N.; Frederich, H.; Maître, A.S.; Ravaine, S.; Chehimi, M.M.; Mangeney, C. Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing. Langmuir 2011, 28, 1005–1012. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, L.; Liang, Y.; Zhao, M. pH-sensitive water-soluble nanospheric imprinted hydrogels prepared as horseradish peroxidase mimetic enzymes. Adv. Mater. 2010, 22, 1488–1492. [Google Scholar] [CrossRef]
- Mohajeri, S.A.; Malaekeh-Nikouei, B.; Sadegh, H. Development of a pH-responsive imprinted polymer for diclofenac and study of its binding properties in organic and aqueous media. Drug Dev. Ind. Pharm. 2012, 38, 616–622. [Google Scholar] [CrossRef]
- Li, S.; Tiwari, A.; Ge, Y.; Fei, D. A pH-responsive, low crosslinked, molecularly imprinted insulin delivery system. Adv. Mater. Lett. 2010, 1, 4–10. [Google Scholar] [CrossRef]
- Gong, C.; Lam, M.W.; Yu, H. The fabrication of a photoresponsive molecularly imprinted polymer for the photoregulated uptake and release of caffeine. Adv. Funct. Mater. 2006, 16, 1759–1767. [Google Scholar] [CrossRef]
- Gomy, C.; Schmitzer, A.R. Synthesis and photoresponsive properties of a molecularly imprinted polymer. Org. Lett. 2007, 9, 3865–3868. [Google Scholar] [CrossRef]
- Xu, S.; Li, J.; Song, X.; Liu, J.; Lu, H.; Chen, L. Photonic and magnetic dual responsive molecularly imprinted polymers: Preparation, recognition characteristics and properties as a novel sorbent for caffeine in complicated samples. Anal. Method. 2013, 5, 124–133. [Google Scholar] [CrossRef]
- Gong, C.; Wong, K.-L.; Lam, M.H. Photoresponsive molecularly imprinted hydrogels for the photoregulated release and uptake of pharmaceuticals in the aqueous media. Chem. Mater. 2008, 20, 1353–1358. [Google Scholar] [CrossRef]
- Tang, Q.; Nie, Y.-T.; Gong, C.-B.; Chow, C.-F.; Peng, J.-D.; Lam, M.H.-W. Photo-responsive molecularly imprinted hydrogels for the detection of melamine in aqueous media. J. Mater. Chem. 2012, 22, 19812–19820. [Google Scholar] [CrossRef]
- Gong, C.-B.; Yang, Y.-Z.; Gao, C.; Tang, Q.; Chow, C.-F.; Peng, J.-D.; Lam, M.H.-W. The preparation and characterization of photo-responsive sol–gel materials for 2,4-dichlorophenoxyacetic acid by surface imprinting. J. Sol-Gel Sci. Technol. 2013, 67, 442–450. [Google Scholar] [CrossRef]
- Fang, L.; Chen, S.; Guo, X.; Zhang, Y.; Zhang, H. Azobenzene-containing molecularly imprinted polymer microspheres with photo- and thermoresponsive template binding properties in pure aqueous media by atom transfer radical polymerization. Langmuir 2012, 28, 9767–9777. [Google Scholar] [CrossRef]
- Fang, L.; Chen, S.; Zhang, Y.; Zhang, H. Azobenzene-containing molecularly imprinted polymer microspheres with photoresponsive template binding properties. J. Mater. Chem. 2011, 21, 2320–2329. [Google Scholar] [CrossRef]
- Jiang, G.S.; Zhong, S.A.; Chen, L.; Blakey, I.; Whitaker, A. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol–gel for radiation induced selective recognition of 2, 4-dichlorophenoxyacetic acid. Radiat. Phys. Chem. 2011, 80, 130–135. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Nie, S.; Zhao, W.; Lu, Y.; Sun, S.; Zhao, C. Photoresponsive surface molecularly imprinted poly(ether sulfone) microfibers. Langmuir 2012, 28, 13284–13293. [Google Scholar] [CrossRef]
- Li, C.-E.; Zhong, S.-A.; Li, X.-J.; Guo, M. Silica particles coated with azobenzene-containing photoresponsive molecule-imprinted skin layer. Colloid. Polym. Sci. 2013, 291, 2049–2059. [Google Scholar] [CrossRef]
- Tang, Q.; Gong, C.; Lam, M.H.-W.; Fu, X. Photoregulated uptake and release of drug by an organic–inorganic hybrid sol–gel material. J. Sol-Gel Sci. Technol. 2011, 59, 495–504. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Quan, H.-J.; Gong, C.-B.; Yang, Y.-Z.; Tang, Q.; Wei, Y.-B.; Ma, X.-B.; Lam, H.-W. Photocontrolled solid-phase extraction of guanine from complex samples using a novel photoresponsive molecularly imprinted polymer. Food Chem. 2015, 172, 56–62. [Google Scholar] [CrossRef]
- Tang, Q.; Gong, C.; Lam, M.H.W.; Fu, X. Preparation of a photoresponsive molecularly imprinted polymer containing fluorine-substituted azobenzene chromophores. Sens. Actuators B 2011, 156, 100–107. [Google Scholar] [CrossRef]
- Yang, Y.-Z.; Tang, Q.; Gong, C.-B.; Ma, X.-B.; Peng, J.-D.; Lam, M.H.-W. Ultrasensitive detection of bisphenol A in aqueous media using photoresponsive surface molecular imprinting polymer microspheres. New J. Chem. 2014, 38, 1780–1788. [Google Scholar] [CrossRef]
- Minoura, N.; Idei, K.; Rachkov, A.; Choi, Y.-W.; Ogiso, M.; Matsuda, K. Preparation of azobenzene-containing polymer membranes that function in photoregulated molecular recognition. Macromolecules 2004, 37, 9571–9576. [Google Scholar] [CrossRef]
- Minoura, N.; Idei, K.; Rachkov, A.; Uzawa, H.; Matsuda, K. Molecularly imprinted polymer membranes with photoregulated template binding. Chem. Mater. 2003, 15, 4703–4704. [Google Scholar] [CrossRef]
- Sreenivasan, K. On the application of molecularly imprinted poly (HEMA) as a template responsive release system. J. Appl. Polym. Sci. 1999, 71, 1819–1821. [Google Scholar] [CrossRef]
- Miyata, T.; Jige, M.; Hishida, Y.; Okawa, K.; Ohya, Y.; Ouchi, T.; Uragami, T. Preparation of Biomolecule-Responsive Gels by Biomolecular Imprinting. In Proceedings of the AIChE Annual Meeting, San Francisco, CA, USA, 12–17 November 2006.
- Bai, W.; Gariano, N.A.; Spivak, D.A. Macromolecular amplification of binding response in superaptamer hydrogels. J. Am. Chem. Soc. 2013, 135, 6977–6984. [Google Scholar] [CrossRef]
- Watanabe, M.; Akahoshi, T.; Tabata, Y.; Nakayama, D. Molecular specific swelling change of hydrogels in accordance with the concentration of guest molecules. J. Am. Chem. Soc. 1998, 120, 5577–5578. [Google Scholar] [CrossRef]
- Hua, Z.; Chen, Z.; Li, Y.; Zhao, M. Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin. Langmuir 2008, 24, 5773–5780. [Google Scholar] [CrossRef]
- Hoshino, Y.; Ohashi, R.C.; Miura, Y. Rational design of synthetic nanoparticles with a large reversible shift of acid dissociation constants: Proton imprinting in stimuli responsive nanogel particles. Adv. Mater. 2014, 26, 3718–3723. [Google Scholar] [CrossRef]
- Laidler, K.J.; Peterman, B.F. [10] Temperature effects in enzyme kinetics. Methods Enzymol. 1979, 63, 234–257. [Google Scholar]
- Schild, H.G. Poly (N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Plunkett, K.N.; Zhu, X.; Moore, J.S.; Leckband, D.E. PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir 2006, 22, 4259–4266. [Google Scholar] [CrossRef]
- Nash, M.E.; Fan, X.; Carroll, W.M.; Gorelov, A.V.; Barry, F.P.; Shaw, G.; Rochev, Y.A. Thermoresponsive substrates used for the expansion of human mesenchymal stem cells and the preservation of immunophenotype. Stem Cell Rev. Rep. 2013, 9, 148–157. [Google Scholar] [CrossRef]
- Oya, T.; Enoki, T.; Grosberg, A.Y.; Masamune, S.; Sakiyama, T.; Takeoka, Y.; Tanaka, K.; Wang, G.; Yilmaz, Y.; Feld, M.S. Reversible molecular adsorption based on multiple-point interaction by shrinkable gels. Science 1999, 286, 1543–1545. [Google Scholar] [CrossRef]
- D’Oleo, R.; Alvarez-Lorenzo, C.; Sun, G. A new approach to design imprinted polymer gels without using a template. Macromolecules 2001, 34, 4965–4971. [Google Scholar] [CrossRef]
- Ozmen, M.M.; Okay, O. Swelling behavior of strong polyelectrolyte poly (N-t-butylacrylamide-co-acrylamide) hydrogels. Eur. Polym. J. 2003, 39, 877–886. [Google Scholar] [CrossRef]
- Lovett, J.R.; Warren, N.J.; Ratcliffe, L.P.; Kocik, M.K.; Armes, S.P. pH-responsive non-ionic diblock copolymers: Ionization of carboxylic acid end-groups induces an order-order morphological transition. Angew. Chem. Int. Ed. 2015, 54, 1279–1283. [Google Scholar] [CrossRef]
- Némethy, Á.; Solti, K.; Kiss, L.; Gyarmati, B.; Deli, M.A.; Csányi, E.; Szilágyi, A. pH-and temperature-responsive poly (aspartic acid)-l-poly(N-isopropylacrylamide) conetwork hydrogel. Eur. Polym. J. 2013, 49, 2392–2403. [Google Scholar]
- Begum, G.; Laxmi, M.V.; Rana, R.K. Entrapped polyamines in biomimetically synthesized nanostructured silica spheres as pH-responsive gates for controlled drug release. J. Mater. Chem. 2012, 22, 22174–22180. [Google Scholar] [CrossRef]
- Kanekiyo, Y.; Tao, H.; Sellergren, B. Stimuli-responsive guest binding and releasing by dendritic polymer-based hydrogels. Polym. J. 2008, 40, 684–687. [Google Scholar] [CrossRef]
- Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Iemma, F.; Picci, N. Molecularly imprinted polymers in drug delivery: State of art and future perspectives. Expert Opin. Drug Deliv. 2011, 8, 1379–1393. [Google Scholar] [CrossRef]
- Puoci, F.; Iemma, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Spizzirri, U.G.; Picci, N. New restricted access materials combined to molecularly imprinted polymers for selective recognition/release in water media. Eur. Polym. J. 2009, 45, 1634–1640. [Google Scholar] [CrossRef]
- Kanekiyo, Y.; Naganawa, R.; Tao, H. Molecular imprinting of bisphenol A and alkylphenols using amylose as a host matrix. Chem. Commun. 2002, 22, 2698–2699. [Google Scholar] [CrossRef]
- Oral, E.; Peppas, N.A. Responsive and recognitive hydrogels using star polymers. J. Biomed. Mater. Res. Part A 2004, 68, 439–447. [Google Scholar] [CrossRef]
- Zhao, K.; Cheng, G.; Wei, J.; Zhou, J.; Zhang, J.; Chen, L. The rebinding properties of bovine serum albumin imprinted calcium alginate/phosphate hybrid microspheres via the adjustment of pH values and salt concentration. Macromol. Symp. 2010, 297, 126–137. [Google Scholar] [CrossRef]
- Kumar, G.S.; Neckers, D. Photochemistry of azobenzene-containing polymers. Chem. Rev. 1989, 89, 1915–1925. [Google Scholar] [CrossRef]
- Waldeck, D.H. Photoisomerization dynamics of stilbenes. Chem. Rev. 1991, 91, 415–436. [Google Scholar] [CrossRef]
- Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 2000, 100, 1741–1754. [Google Scholar] [CrossRef]
- Yokoyama, Y. Fulgides for memories and switches. Chem. Rev. 2000, 100, 1717–1740. [Google Scholar] [CrossRef]
- Asano, T.; Okada, T. Thermal ZE isomerization of azobenzenes. The pressure, solvent, and substituent effects. J. Org. Chem. 1984, 49, 4387–4391. [Google Scholar] [CrossRef]
- Siampiringue, N.; Guyot, G.; Monti, S.; Bortolus, P. The cis→trans photoisomerization of azobenzene: An experimental re-examination. J. Photochem. 1987, 37, 185–188. [Google Scholar] [CrossRef]
- Hermann, D.; Rudquist, P.; Ichimura, K.; Kudo, K.; Komitov, L.; Lagerwall, S. Flexoelectric polarization changes induced by light in a nematic liquid crystal. Phys. Rev. E 1997, 55, 2857. [Google Scholar] [CrossRef]
- Ye, L.; Cormack, P.A.; Mosbach, K. Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal. Commun. 1999, 36, 35–38. [Google Scholar] [CrossRef]
- Shimoboji, T.; Larenas, E.; Fowler, T.; Kulkarni, S.; Hoffman, A.S.; Stayton, P.S. Photoresponsive polymer–enzyme switches. Proc. Natl. Acad. Sci. USA 2002, 99, 16592–16596. [Google Scholar] [CrossRef]
- Chu, L.Y.; Yamaguchi, T.; Nakao, S.-I. A molecular-recognition microcapsule for environmental stimuli-responsive controlled release. Adv. Mater. 2002, 14, 386–389. [Google Scholar] [CrossRef]
- Pan, G.; Guo, B.; Ma, Y.; Cui, W.; He, F.; Li, B.; Yang, H.; Shea, K.J. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes. J. Am. Chem. Soc. 2014, 136, 6203–6206. [Google Scholar] [CrossRef]
- Guo, B.; Pan, G.; Guo, Q.; Zhu, C.; Cui, W.; Li, B.; Yang, H. Saccharides and temperature dual-responsive hydrogel layers for harvesting cell sheets. Chem. Commun. 2015, 51, 644–647. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Ma, Y.; Pan, J.; Meng, Z.; Pan, G.; Sellergren, B. Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers 2015, 7, 1689-1715. https://doi.org/10.3390/polym7091478
Chen W, Ma Y, Pan J, Meng Z, Pan G, Sellergren B. Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers. 2015; 7(9):1689-1715. https://doi.org/10.3390/polym7091478
Chicago/Turabian StyleChen, Wei, Yue Ma, Jianmin Pan, Zihui Meng, Guoqing Pan, and Börje Sellergren. 2015. "Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives" Polymers 7, no. 9: 1689-1715. https://doi.org/10.3390/polym7091478
APA StyleChen, W., Ma, Y., Pan, J., Meng, Z., Pan, G., & Sellergren, B. (2015). Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers, 7(9), 1689-1715. https://doi.org/10.3390/polym7091478