Antithrombotic Therapy in Patients with Peripheral Artery Disease: A Focused Review on Oral Anticoagulation
Abstract
:1. Introduction
Relevance of Peripheral Artery Disease
2. Pathophysiology of Thrombosis and Hemostasis in Peripheral Artery Disease
3. Antithrombotic Therapy in PAD
3.1. Where Are We Now? Using Rivaroxaban in Peripheral Artery Disease
3.2. Role of Other DOACs
4. The Future Is Coming: FXI and FXII as Targets for Novel Anticoagulants
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cassar, K.; Bachoo, P.; Ford, I.; Greaves, M.; Brittenden, J. Markers of Coagulation Activation, Endothelial Stimulation and Inflammation in Patients with Peripheral Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2005, 29, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassila, R. Role and Management of Coagulation Disorders in Peripheral Arterial Disease. Scand. J. Surg. 2012, 101, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, A.; Syed, M.H.; Rand, M.L.; Singh, K.; Hussain, M.A.; Jain, S.; Khan, H.; Verma, S.; Al-Omran, M.; Abdin, R.; et al. Altered coagulation profile in peripheral artery disease patients. Vascular 2020, 28, 368–377. [Google Scholar] [CrossRef]
- Memtsas, V.; Arachchillage, D.; Gorog, D. Role, Laboratory Assessment and Clinical Relevance of Fibrin, Factor XIII and Endogenous Fibrinolysis in Arterial and Venous Thrombosis. Int. J. Mol. Sci. 2021, 22, 1472. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.N.; Bonaca, M.P. Contemporary Review of Antithrombotic Therapy in Peripheral Artery Disease. Circ. Cardiovasc. Interv. 2020, 13, e009584. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2017, 39, 763–816. [Google Scholar] [CrossRef] [Green Version]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e686–e725. [Google Scholar] [CrossRef]
- Olin, J.W.; Allie, D.E.; Belkin, M.; Bonow, R.O.; Casey, N.E.; Creager, M.A.; Gerber, T.C.; Hirsch, A.T.; Jaff, M.R.; Kaufman, J.A.; et al. ACCF/AHA/ACR/SCAI/SIR/SVM/SVN/SVS 2010 performance measures for adults with peripheral artery disease: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures, the American College of Radiology, the Society for Cardiac Angiography and Interventions, the Society for Interventional Radiology, the Society for Vascular Medicine, the Society for Vascular Nursing, and the Society for Vascular Surgery (Writing Committee to Develop Clinical Performance Measures for Peripheral Artery Disease). J. Vasc. Surg. 2010, 52, 1616–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowkes, F.G.R.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Makowski, L.; Feld, J.; Köppe, J.; Illner, J.; Kühnemund, L.; Wiederhold, A.; Dröge, P.; Günster, C.; Gerß, J.; Reinecke, H.; et al. Sex related differences in therapy and outcome of patients with intermittent claudication in a real-world cohort. Atherosclerosis 2021, 325, 75–82. [Google Scholar] [CrossRef]
- De Luca, L.; Bonaca, M.P.; Magnani, G. Antithrombotic strategies for patients with coronary and lower extremity peripheral artery diseases: A narrative review. Expert Rev. Cardiovasc. Ther. 2020, 18, 881–889. [Google Scholar] [CrossRef]
- Berger, A.; Simpson, A.; Leeper, N.J.; Murphy, B.; Nordstrom, B.; Ting, W.; Zhao, Q.; Berger, J. Real-World Predictors of Major Adverse Cardiovascular Events and Major Adverse Limb Events Among Patients with Chronic Coronary Artery Disease and/or Peripheral Arterial Disease. Adv. Ther. 2020, 37, 240–252. [Google Scholar] [CrossRef]
- Armstrong, E.J.; Chen, D.C.; Westin, G.; Singh, S.; McCoach, C.E.; Bang, H.; Yeo, K.; Anderson, D.; Amsterdam, E.A.; Laird, J.R. Adherence to Guideline-Recommended Therapy Is Associated With Decreased Major Adverse Cardiovascular Events and Major Adverse Limb Events Among Patients with Peripheral Arterial Disease. J. Am. Heart Assoc. 2014, 3, e000697. [Google Scholar] [CrossRef] [Green Version]
- Pastori, D.; Farcomeni, A.; Milanese, A.; Del Sole, F.; Menichelli, D.; Hiatt, W.R.; Violi, F. Statins and Major Adverse Limb Events in Patients with Peripheral Artery Disease: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2020, 120, 866–875. [Google Scholar] [CrossRef]
- Wang, C.C.L.; Blomster, J.I.; Heizer, G.; Berger, J.; Baumgartner, I.; Fowkes, F.G.R.; Held, P.; Katona, B.G.; Norgren, L.; Jones, W.S.; et al. Cardiovascular and Limb Outcomes in Patients with Diabetes and Peripheral Artery Disease. J. Am. Coll. Cardiol. 2018, 72, 3274–3284. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.F.; Salahuddin, T.; O’Neal, W.T.; Soliman, E.Z. Peripheral arterial disease is associated with an increased risk of atrial fibrillation in the elderly. Europace 2016, 18, 794–798. [Google Scholar] [CrossRef]
- Bertomeu-Gonzalez, V.; Moreno-Arribas, J.; Esteve-Pastor, M.A.; Roldán-Rabadán, I.; Muñiz, J.; García, D.O.; Ruiz-Ortiz, M.; Cequier, Á.; Bertomeu-Martínez, V.; Badimón, L.; et al. Peripheral artery disease and clinical outcomes in patients with atrial fibrillation: A report from the FANTASIIA registry. Eur. J. Clin. Investig. 2021, 51, e13431. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Pignatelli, P.; Sciacqua, A.; Perticone, M.; Violi, F.; Lip, G.Y. Relationship of peripheral and coronary artery disease to cardiovascular events in patients with atrial fibrillation. Int. J. Cardiol. 2018, 255, 69–73. [Google Scholar] [CrossRef]
- Winkel, T.; Hoeks, S.; Schouten, O.; Zeymer, U.; Limbourg, T.; Baumgartner, I.; Bhatt, D.; Steg, P.; Goto, S.; Röther, J.; et al. Prognosis of Atrial Fibrillation in Patients with Symptomatic Peripheral Arterial Disease: Data from the REduction of Atherothrombosis for Continued Health (REACH) Registry. Eur. J. Vasc. Endovasc. Surg. 2010, 40, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, W.S.; Patel, M.R.; Dai, D.; Vemulapalli, S.; Subherwal, S.; Stafford, J.; Peterson, E.D. High mortality risks after major lower extremity amputation in Medicare patients with peripheral artery disease. Am. Heart J. 2013, 165, 809–815.e1. [Google Scholar] [CrossRef]
- Smolderen, K.; Wang, K.; de Pouvourville, G.; Brüggenjürgen, B.; Röther, J.; Zeymer, U.; Parhofer, K.; Steg, P.; Bhatt, D.; Magnuson, E. Two-year Vascular Hospitalisation Rates and Associated Costs in Patients at Risk of Atherothrombosis in France and Germany: Highest Burden for Peripheral Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Khoury, H.; Lavoie, L.; Welner, S.; Folkerts, K. The Burden of Major Adverse Cardiac Events and Antiplatelet Prevention in Patients with Coronary or Peripheral Arterial Disease. Cardiovasc. Ther. 2016, 34, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Fowkes, F.; Murray, G.; Butcher, I.; Heald, C.L.; Lee, R.J.; Chambless, L.E.; Folsom, A.R.; Hirsch, A.T.; Dramaix, M.; Debacker, G.; et al. Ankle Brachial Index Combined With Framingham Risk Score to Predict Cardiovascular Events and Mortality: A meta-analysis. JAMA 2008, 300, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Bevan, G.H.; Solaru, K.T.W. Evidence-Based Medical Management of Peripheral Artery Disease. Arter. Thromb. Vasc. Biol. 2020, 40, 541–553. [Google Scholar] [CrossRef]
- Petrucci, G.; Rocca, B. Pathophysiology of Thrombosis in Peripheral Artery Disease. Curr. Vasc. Pharmacol. 2020, 18, 204–214. [Google Scholar] [CrossRef]
- Wieczór, R.; Kulwas, A.; Rość, D. Implications of Hemostasis Disorders in Patients with Critical Limb Ischemia—An In-Depth Comparison of Selected Factors. J. Clin. Med. 2020, 9, 659. [Google Scholar] [CrossRef] [Green Version]
- Makin, A.J.; Chung, N.A.Y.; Silverman, S.H.; Lip, G.Y.H. Vascular endothelial growth factor and tissue factor in patients with established peripheral artery disease: A link between angiogenesis and thrombogenesis? Clin. Sci. 2003, 104, 397–404. [Google Scholar] [CrossRef]
- Chaudhry, R.; Usama, S.M.; Babiker, H.M. Physiology, Coagulation Pathways; StatPearls Publishing: Treasure Island, FL, USA, 2021; Available online: https://www.ncbi.nlm.nih.gov/books/NBK482253/ (accessed on 1 March 2021).
- Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth. 2014, 58, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.J. Tissue Factor, Blood Coagulation, and Beyond: An Overview. Int. J. Inflamm. 2011, 2011, 367284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husted, S.; Wallentin, L.; Andreotti, F.; Arnesen, H.; Bachmann, F.; Baigent, C.; Huber, K.; Jespersen, J.; Kristensen, S.D.; Lip, G.Y.H.; et al. General mechanisms of coagulation and targets of anticoagulants (Section I). Thromb. Haemost. 2013, 109, 569–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Caterina, R.; Husted, S.; Wallentin, L.; Agnelli, G.; Bachmann, F.; Baigent, C.; Jespersen, J.; Kristensen, S.D.; Montalescot, G.; Siegbahn, A.; et al. Anticoagulants in heart disease: Current status and perspectives. Eur. Heart J. 2007, 28, 880–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosesson, M.W. Update on antithrombin I (fibrin). Thromb. Haemost. 2007, 98, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Angiolillo, M.J.; Capodanno, D.; Goto, S. Platelet thrombin receptor antagonism and atherothrombosis. Eur. Heart J. 2009, 31, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Morrow, D.A.; Braunwald, E.; Bonaca, M.P.; Ameriso, S.F.; Dalby, A.J.; Fish, M.P.; Fox, K.A.; Lipka, L.J.; Liu, X.; Nicolau, J.; et al. Vorapaxar in the Secondary Prevention of Atherothrombotic Events. N. Engl. J. Med. 2012, 366, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Romney, G.; Glick, M. An Updated Concept of Coagulation with Clinical Implications. J. Am. Dent. Assoc. 2009, 140, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Altes, P.; Perez, P.; Esteban, C.; Muñoz-Torrero, J.F.S.; Aguilar, E.; García-Díaz, A.M.; Álvarez, L.R.; Jiménez, P.E.; Sahuquillo, J.C.; Monreal, M.; et al. Raised Fibrinogen Levels and Outcome in Outpatients with Peripheral Artery Disease. Angiology 2018, 69, 507–512. [Google Scholar] [CrossRef]
- Kremers, B.; Wübbeke, L.; Mees, B.; Cate, H.T.; Spronk, H.; Cate-Hoek, A.T. Plasma Biomarkers to Predict Cardiovascular Outcome in Patients with Peripheral Artery Disease. Arter. Thromb. Vasc. Biol. 2020, 40, 2018–2032. [Google Scholar] [CrossRef]
- Simurda, T.; Caccia, S.; Asselta, R.; Zolkova, J.; Stasko, J.; Skornova, I.; Sňahničanová, Z.; Loderer, D.; Lasabova, Z.; Kubisz, P. Congenital hypofibrinogenemia associated with a novel heterozygous nonsense mutation in the globular C-terminal domain of the γ-chain (p.Glu275Stop). J. Thromb. Thrombolysis 2020, 50, 233–236. [Google Scholar] [CrossRef]
- Simurda, T.; Brunclikova, M.; Asselta, R.; Caccia, S.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Genetic Variants in the FGB and FGG Genes Mapping in the Beta and Gamma Nodules of the Fibrinogen Molecule in Congenital Quantitative Fibrinogen Disorders Associated with a Thrombotic Phenotype. Int. J. Mol. Sci. 2020, 21, 4616. [Google Scholar] [CrossRef] [PubMed]
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef]
- Scharf, R.E. Platelet Signaling in Primary Haemostasis and Arterial Thrombus Formation: Part I. Hamostaseologie 2018, 38, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Sitia, S.; Tomasoni, L.; Atzeni, F.; Ambrosio, G.; Cordiano, C.; Catapano, A.L.; Tramontana, S.; Perticone, F.; Naccarato, P.; Camici, P.; et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 2010, 9, 830–834. [Google Scholar] [CrossRef]
- Sima, A.V.; Stancu, C.S.; Simionescu, M. Vascular endothelium in atherosclerosis. Cell Tissue Res. 2009, 335, 191–203. [Google Scholar] [CrossRef]
- Simurda, T.; Vilar, R.; Zolkova, J.; Ceznerova, E.; Kolkova, Z.; Loderer, D.; Neerman-Arbez, M.; Casini, A.; Brunclikova, M.; Skornova, I.; et al. A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype. Biomedicines 2020, 8, 605. [Google Scholar] [CrossRef]
- Park, J.K.; Bae, D.S.; Kim, Y.H.; Shin, K.J. Aging, Hypercoagulability, and Leg Necrosis in Critical Limb Ischemia. Ann. Vasc. Surg. 2015, 29, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Saenz-Pipaon, G.; Martinez-Aguilar, E.; Orbe, J.; Miqueo, A.G.; Fernandez-Alonso, L.; Paramo, J.; Roncal, C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. Int. J. Mol. Sci. 2021, 22, 3601. [Google Scholar] [CrossRef]
- Kietsiriroje, N.; Ariëns, R.A.; Ajjan, R.A. Fibrinolysis in Acute and Chronic Cardiovascular Disease. Semin. Thromb. Hemost. 2021. [Google Scholar] [CrossRef]
- Muller, M.D.; Reed, A.B.; Leuenberger, U.A.; Sinoway, L. Physiology in Medicine: Peripheral arterial disease. J. Appl. Physiol. 2013, 115, 1219–1226. [Google Scholar] [CrossRef]
- Hiatt, W.R.; Armstrong, E.J.; Larson, C.J.; Brass, E.P. Pathogenesis of the Limb Manifestations and Exercise Limitations in Peripheral Artery Disease. Circ. Res. 2015, 116, 1527–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, A.R.; Houben, E.; Bezemer, I.D.; Visseren, F.L.J.; Bots, M.L.; Herings, R.M.; de Borst, G.-J. Platelet aggregation inhibitor prescription for newly diagnosed peripheral arterial disease in the Netherlands: A cohort study. BMJ Open 2021, 11, e041715. [Google Scholar] [CrossRef] [PubMed]
- Søgaard, M.; Nielsen, P.B.; Skjøth, F.; Eldrup, N.; Larsen, T.B. Temporal Changes in Secondary Prevention and Cardiovascular Outcomes After Revascularization for Peripheral Arterial Disease in Denmark. Circulation 2021, 143, 907–920. [Google Scholar] [CrossRef] [PubMed]
- Warfarin Antiplatelet Vascular Evaluation Trial Investigators; Anand, S.S.; Yusuf, S.; Xie, C.; Pogue, J.; Eikelboom, J.; Budaj, A.; Sussex, B.; Liu, L.; Guzman, R.; et al. Oral Anticoagulant and Antiplatelet Therapy and Peripheral Arterial Disease. N. Engl. J. Med. 2007, 357, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Zannad, F.; Bauersachs, R. Rivaroxaban: A New Treatment Paradigm in the Setting of Vascular Protection? Thromb. Haemost. 2018, 118, S12–S22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cate, H.T.; Guzik, T.J.; Eikelboom, J.; Spronk, H.M.H. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: Mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc. Res. 2020. [Google Scholar] [CrossRef]
- Mega, J.L.; Braunwald, E.; Wiviott, S.D.; Bassand, J.-P.; Bhatt, D.L.; Bode, C.; Burton, P.; Cohen, M.; Cook-Bruns, N.; Fox, K.A.; et al. Rivaroxaban in Patients with a Recent Acute Coronary Syndrome. N. Engl. J. Med. 2012, 366, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Ohman, E.M.; Roe, M.T.; Steg, P.G.; James, S.K.; Povsic, T.J.; White, J.; Rockhold, F.; Plotnikov, A.; Mundl, H.; Strony, J.; et al. Clinically significant bleeding with low-dose rivaroxaban versus aspirin, in addition to P2Y12 inhibition, in acute coronary syndromes (GEMINI-ACS-1): A double-blind, multicentre, randomised trial. Lancet 2017, 389, 1799–1808. [Google Scholar] [CrossRef]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef]
- Anand, S.S.; Bosch, J.; Eikelboom, J.W.; Connolly, S.J.; Diaz, R.; Widimsky, P.; Aboyans, V.; Alings, M.; Kakkar, A.K.; Keltai, K.; et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: An international, randomised, double-blind, placebo-controlled trial. Lancet 2018, 391, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.S.; Caron, F.; Eikelboom, J.W.; Bosch, J.; Dyal, L.; Aboyans, V.; Abola, M.T.; Branch, K.; Keltai, K.; Bhatt, D.L.; et al. Major Adverse Limb Events and Mortality in Patients with Peripheral Artery Disease. J. Am. Coll. Cardiol. 2018, 71, 2306–2315. [Google Scholar] [CrossRef]
- Kaplovitch, E.; Eikelboom, J.W.; Dyal, L.; Aboyans, V.; Abola, M.T.; Verhamme, P.; Avezum, A.; Fox, K.A.A.; Berkowitz, S.D.; Bangdiwala, S.I.; et al. Rivaroxaban and Aspirin in Patients With Symptomatic Lower Extremity Peripheral Artery Disease. JAMA Cardiol. 2020. [Google Scholar] [CrossRef]
- Capell, W.H.; Bonaca, M.P.; Nehler, M.R.; Chen, E.; Kittelson, J.M.; Anand, S.S.; Berkowitz, S.D.; Debus, E.S.; Fanelli, F.; Haskell, L.; et al. Rationale and design for the Vascular Outcomes study of ASA along with rivaroxaban in endovascular or surgical limb revascularization for peripheral artery disease (VOYAGER PAD). Am. Heart J. 2018, 199, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Bonaca, M.P.; Bauersachs, R.M.; Anand, S.S.; Debus, E.S.; Nehler, M.R.; Patel, M.R.; Fanelli, F.; Capell, W.H.; Diao, L.; Jaeger, N.; et al. Rivaroxaban in Peripheral Artery Disease after Revascularization. N. Engl. J. Med. 2020, 382, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Darmon, A.; Bhatt, D.L.; Elbez, Y.; Aboyans, V.; Anand, S.; Bosch, J.; Branch, K.; Connolly, S.J.; Dyal, L.; Eikelboom, J.W.; et al. External applicability of the COMPASS trial: An analysis of the reduction of atherothrombosis for continued health (REACH) registry. Eur. Heart J. 2018, 39, 750–757a. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, K.A.; Anand, S.S.; Aboyans, V.; Cowie, M.; Debus, E.S.; Zeymer, U.; Monje, D.; Vogtländer, K.; Lawatscheck, R.; Gay, A. Xarelto plus Acetylsalicylic acid: Treatment patterns and Outcomes in patients with Atherosclerosis (XATOA): Rationale and design of a prospective registry study to assess rivaroxaban 2.5 mg twice daily plus aspirin for prevention of atherothrombotic events in coronary artery disease, peripheral artery disease, or both. Am. Heart J. 2020, 222, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Moll, F.; Baumgartner, I.; Jaff, M.; Nwachuku, C.; Tangelder, M.; Ansel, G.; Adams, G.; Zeller, T.; Rundback, J.; Grosso, M.; et al. Edoxaban Plus Aspirin vs Dual Antiplatelet Therapy in Endovascular Treatment of Patients With Peripheral Artery Disease: Results of the ePAD Trial. J. Endovasc. Ther. 2018, 25, 158–168. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Duceppe, E.; Guyatt, G.; Tandon, V.; Rodseth, R.; Biccard, B.M.; Xavier, D.; Szczeklik, W.; Meyhoff, C.; Vincent, J.; et al. Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): An international, randomised, placebo-controlled trial. Lancet 2018, 391, 2325–2334. [Google Scholar] [CrossRef]
- Biagioni, R.B.; Lopes, R.D.; Agati, L.B.; Sacilotto, R.; Wolosker, N.; Sobreira, M.L.; Soares, B.L.D.F.; Joviliano, E.E.; Bernardi, W.H.; Junior, V.C.; et al. Rationale and design for the study Apixaban versus ClopidoGRel on a background of aspirin in patient undergoing InfraPoPliteal angioplasty for critical limb ischemia: AGRIPPA trial. Am. Heart J. 2020, 227, 100–106. [Google Scholar] [CrossRef]
- Mackman, N.; Bergmeier, W.; Stouffer, G.A.; Weitz, J.I. Therapeutic strategies for thrombosis: New targets and approaches. Nat. Rev. Drug Discov. 2020, 19, 333–352. [Google Scholar] [CrossRef]
- Weitz, J.I.; Harenberg, J. New developments in anticoagulants: Past, present and future. Thromb. Haemost. 2017, 117, 1283–1288. [Google Scholar] [CrossRef] [Green Version]
- Fredenburgh, J.C.; Weitz, J.I. New anticoagulants: Moving beyond the direct oral anticoagulants. J. Thromb. Haemost. 2021, 19, 20–29. [Google Scholar] [CrossRef]
- Camelo-Castillo, A.; Marín, F.; Roldán, V. Factor XI, much more than an innocent observer. J. Thromb. Haemost. 2020, 18, 3172–3173. [Google Scholar] [CrossRef] [PubMed]
- Pireaux, V.; Tassignon, J.; Demoulin, S.; Derochette, S.; Borenstein, N.; Ente, A.; Fiette, L.; Douxfils, J.; Lancellotti, P.; Guyaux, M.; et al. Anticoagulation With an Inhibitor of Factors XIa and XIIa During Cardiopulmonary Bypass. J. Am. Coll. Cardiol. 2019, 74, 2178–2189. [Google Scholar] [CrossRef] [PubMed]
- Bristol-Myers-Squibb. A Study on BMS-986177 for the Prevention of a Stroke in Patients Receiving Aspirin and Clopidogrel (AXIOMATIC-SSP) (NCT03766581). Available online: https://clinicaltrials.gov/ct2/show/study/NCT03766581 (accessed on 1 March 2021).
- Bayer. Study to Gather Information about the Proper Dosing and Safety of the Oral FXIa Inhibitor BAY 2433334 in Patients Following an Acute Heart Attack (PACIFIC-AMI) (NCT04304534). Available online: https://clinicaltrials.gov/ct2/show/NCT04304534 (accessed on 1 March 2021).
Title | Sample Size | Arms | Main Efficacy Outcomes | Main Safety Outcomes |
---|---|---|---|---|
COMPASS | 27,395 | Rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily) (N = 9152) | Primary outcome: Cardiovascular death, stroke, or myocardial infarction
• Rivaroxaban plus aspirin vs. Aspirin alone: HR 0.76 (95% CI 0.66–0.86), p < 0.001 • Rivaroxaban vs. Aspirin: HR 0.90 (95% CI 0.79–1.03), p = 0.12 | Major bleeding • Rivaroxaban plus aspirin vs. Aspirin alone: HR 1.70 (95% CI 1.40–2.05), p < 0.001 • Rivaroxaban vs. Aspirin: HR 1.51 (95% CI 1.25–1.84), p < 0.001 |
Rivaroxaban (5 mg twice daily) (N = 9117) | Fatal bleeding or symptomatic bleeding into critical organ • Rivaroxaban plus aspirin vs. Aspirin alone: HR 1.34 (95% CI 0.95–1.88), p = 0.09 • Rivaroxaban vs. Aspirin: HR 1.58 (95% CI 1.13–2.19), p = 0.006 | |||
Aspirin (100 mg once daily). (N = 9126) | ||||
COMPASS (LEAD patients only) | 6391 | Rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily) (N = 2139) | Major Adverse Limb Events:
• Rivaroxaban plus aspirin vs. Aspirin alone: HR 0.57 (95% CI 0.37–0.88), p = 0.01 • Rivaroxaban vs. Aspirin: HR 0.71 (95% CI 0.47–1.06), p = 0.07 | Major Bleeding • Rivaroxaban plus aspirin vs. Aspirin alone: HR 1.61 (95% CI 1.09–2.36), p = 0.01 • Rivaroxaban vs. Aspirin: HR 1.60 (95% CI 1.09–2.36), p = 0.02 |
Rivaroxaban (5 mg twice daily) (N = 2129) | Fatal bleeding or symptomatic bleeding into a critical organ or surgical site bleeding requiring re-operation. • Rivaroxaban plus aspirin vs. Aspirin alone: HR 1.32 (95% CI 0.71–2.42), p = 0.38 • Rivaroxaban vs. Aspirin: HR 1.30 (95% CI 0.70–2.40), p = 0.41 | |||
Aspirin (100 mg once daily). (N = 2123) | ||||
VOYAGER PAD | 6564 | Rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily) (N = 3286) | Primary outcome: acute limb ischemia, major amputation for vascular causes, myocardial infarction, ischemic stroke, or cardiovascular death • Rivaroxaban plus aspirin vs. Placebo plus aspirin: HR 0.85 (95% CI 0.76–0.96), p = 0.009 | Major bleeding (TIMI definition) • Rivaroxaban plus aspirin vs. Placebo plus aspirin: HR 1.43 (95% CI 0.97–2.10), p = 0.07 |
Placebo plus aspirin (100 mg once daily) (N = 3278) | Intracranial or fatal bleeding • Rivaroxaban plus aspirin vs. Placebo plus aspirin: HR 0.91 (95% CI 0.47–1.76) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Caravaca, J.M.; Camelo-Castillo, A.; Ramírez-Macías, I.; Gil-Pérez, P.; López-García, C.; Esteve-Pastor, M.A.; Orenes-Piñero, E.; Tello-Montoliu, A.; Marín, F. Antithrombotic Therapy in Patients with Peripheral Artery Disease: A Focused Review on Oral Anticoagulation. Int. J. Mol. Sci. 2021, 22, 7113. https://doi.org/10.3390/ijms22137113
Rivera-Caravaca JM, Camelo-Castillo A, Ramírez-Macías I, Gil-Pérez P, López-García C, Esteve-Pastor MA, Orenes-Piñero E, Tello-Montoliu A, Marín F. Antithrombotic Therapy in Patients with Peripheral Artery Disease: A Focused Review on Oral Anticoagulation. International Journal of Molecular Sciences. 2021; 22(13):7113. https://doi.org/10.3390/ijms22137113
Chicago/Turabian StyleRivera-Caravaca, José Miguel, Anny Camelo-Castillo, Inmaculada Ramírez-Macías, Pablo Gil-Pérez, Cecilia López-García, María Asunción Esteve-Pastor, Esteban Orenes-Piñero, Antonio Tello-Montoliu, and Francisco Marín. 2021. "Antithrombotic Therapy in Patients with Peripheral Artery Disease: A Focused Review on Oral Anticoagulation" International Journal of Molecular Sciences 22, no. 13: 7113. https://doi.org/10.3390/ijms22137113
APA StyleRivera-Caravaca, J. M., Camelo-Castillo, A., Ramírez-Macías, I., Gil-Pérez, P., López-García, C., Esteve-Pastor, M. A., Orenes-Piñero, E., Tello-Montoliu, A., & Marín, F. (2021). Antithrombotic Therapy in Patients with Peripheral Artery Disease: A Focused Review on Oral Anticoagulation. International Journal of Molecular Sciences, 22(13), 7113. https://doi.org/10.3390/ijms22137113