Theoretical Study of Retinol, Niacinamide and Glycolic Acid with Halloysite Clay Mineral as Active Ingredients for Topical Skin Care Formulations
Abstract
:1. Introduction
2. Methodology
2.1. Models
2.2. Molecular Modeling Methodology
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of Clays as Drug Delivery Systems: Possibilities and Limitations. Appl. Clay Sci. 2007, 36, 22–36. [Google Scholar] [CrossRef]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Miner. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- Chen, C.-R.; Zatz, J.L. Dynamic Rheologic Measurement of the Interaction between Xanthan Gum and Colloidal Magnesium Aluminum Silicate. J. Soc. Cosmet. Chem. 1992, 43, 1–12. [Google Scholar]
- Ciullo, P.; Braun, D. Stabilising Topical Products. Manuf. Chem. 1992, 63, 20–21. [Google Scholar]
- Le, H.A. Farmacia Galénica. In Manuales de Farmacia; Masson: Barcelona, France, 1995. [Google Scholar]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Lopez-Galindo, A. Uses of Clay Minerals in Semisolid Health Care and Therapeutic Products. Appl. Clay Sci. 2007, 36, 37–50. [Google Scholar] [CrossRef]
- Brooks, J.K.; Bashirelahi, N.; Reynolds, M.A. Charcoal and Charcoal-Based Dentifrices: A Literature Review. J. Am. Dent. Assoc. 2017, 148, 661–670. [Google Scholar] [CrossRef]
- Del Hoyo, C.; Vicente, M.A.; Rives, V. Application of Phenyl Salicylate-Sepiolite Systems as Ultraviolet Radiation Filters. Clay Miner. 1998, 33, 467–474. [Google Scholar] [CrossRef]
- López-Galindo, A.; Viseras, C.; Cerezo, P. Compositional, Technical and Safety Specifications of Clays to Be Used as Pharmaceutical and Cosmetic Products. Appl. Clay Sci. 2007, 36, 51–63. [Google Scholar] [CrossRef]
- Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay Minerals: Properties and Applications to Dermocosmetic Products and Perspectives of Natural Raw Materials for Therapeutic Purposes—A Review. Int. J. Pharm. 2017, 534, 213–219. [Google Scholar] [CrossRef]
- Beringhs, A.O.; Rosa, J.M.; Stulzer, H.K.; Budal, R.M.; Sonaglio, D. Green Clay and Aloe Vera Peel-Off Facial Masks: Response Surface Methodology Applied to the Formulation Design. AAPS PharmSciTech 2013, 14, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent Advance in Research on Halloysite Nanotubes-Polymer Nanocomposite. Prog. Polym. Sci. 2014, 39, 1498–1525. [Google Scholar] [CrossRef]
- Lvov, Y.; Aerov, A.; Fakhrullin, R. Clay Nanotube Encapsulation for Functional Biocomposites. Adv. Colloid Interface Sci. 2014, 207, 189–198. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef]
- Aguzzi, C.; Sandri, G.; Cerezo, P.; Carazo, E.; Viseras, C. Health and Medical Applications of Tubular Clay Minerals. In Developments in Clay Science; Elsevier B.V.: Amsterdam, The Netherlands, 2016; pp. 708–725. ISBN 9780081002933. [Google Scholar]
- Minullina, R.; Tully, J.; Yendluri, R.; Lvov, Y. Halloysite Clay Nanotubes for Long Acting Controlled Release of Drugs and Proteins. In RSC Smart Materials; Royal Society of Chemistry: London, UK, 2017; pp. 354–378. [Google Scholar]
- Yendluri, R.; Otto, D.P.; de Villiers, M.M.; Vinokurov, V.; Lvov, Y.M. Application of Halloysite Clay Nanotubes as a Pharmaceutical Excipient. Int. J. Pharm. 2017, 521, 267–273. [Google Scholar] [CrossRef]
- Kamble, R.; Ghag, M.; Gaikawad, S.; Panda, B.K. Halloysite Nanotubes and Applications: A Review. J. Adv. Res. 2012, 3, 25–29. [Google Scholar]
- Panchal, A.; Fakhrullina, G.; Fakhrullin, R.; Lvov, Y. Self-Assembly of Clay Nanotubes on Hair Surface for Medical and Cosmetic Formulations. Nanoscale 2018, 10, 18205–18216. [Google Scholar] [CrossRef]
- Santos, A.C.; Panchal, A.; Rahman, N.; Pereira-Silva, M.; Pereira, I.; Veiga, F.; Lvov, Y. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials 2019, 9, 903. [Google Scholar] [CrossRef] [Green Version]
- Suh, Y.J.; Cho, K. Immobilization of Nanoscale Sunscreening Agents onto Natural Halloysite Micropowder. Mater. Trans. 2015, 56, 899–904. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, G.; Milioto, S.; Konnova, S.; Fakhrullina, G.; Akhatova, F.; Lazzara, G.; Fakhrullin, R.; Lvov, Y. Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating. ACS Appl. Mater. Interfaces 2020, 12, 24348–24362. [Google Scholar] [CrossRef]
- Lemmel, J. Prevención y Tratamiento Cosmético Del Envejecimiento Cutáneo. Offarm 2003, 22, 75–82. [Google Scholar]
- Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhães, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the Use of Antioxidants in Anti-Ageing Cosmetics. Int. J. Cosmet. Sci. 2019, 41, 378–386. [Google Scholar] [CrossRef]
- Goudon, F.; Clément, Y.; Ripoll, L. Controlled Release of Retinol in Cationic Co-Polymeric Nanoparticles for Topical Application. Cosmetics 2020, 7, 29. [Google Scholar] [CrossRef]
- Temova Rakuša, Ž.; Škufca, P.; Kristl, A.; Roškar, R. Quality Control of Retinoids in Commercial Cosmetic Products. J. Cosmet. Dermatol. 2021, 20, 1166–1175. [Google Scholar] [CrossRef]
- Shields, C.W.; White, J.P.; Osta, E.G.; Patel, J.; Rajkumar, S.; Kirby, N.; Therrien, J.P.; Zauscher, S. Encapsulation and Controlled Release of Retinol from Silicone Particles for Topical Delivery. J. Control. Release 2018, 278, 37–48. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Carazo, E.; Aguzzi, C.; Viseras, C.; Sainz-Díaz, C.I. Biopharmaceutical Improvement of Praziquantel by Interaction with Montmorillonite and Sepiolite. Appl. Clay Sci. 2018, 160. [Google Scholar] [CrossRef]
- Forbat, E.; Al-Niaimi, F.; Ali, F.R. Use of Nicotinamide in Dermatology. Clin. Exp. Immunol. 2017, 42, 137–144. [Google Scholar] [CrossRef]
- Chen, A.C.; Damian, D.L. Nicotinamide and the Skin. Australas. J. Dermatol. 2014, 55, 169–175. [Google Scholar] [CrossRef]
- Rolfe, H.M. A Review of Nicotinamide: Treatment of Skin Diseases and Potential Side Effects. J. Cosmet. Dermatol. 2014, 13, 324–328. [Google Scholar] [CrossRef]
- Snaidr, V.A.; Damian, D.L.; Halliday, G.M. Nicotinamide for Photoprotection and Skin Cancer Chemoprevention: A Review of Efficacy and Safety. Exp. Dermatol. 2019, 28, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Santos-Caetano, J.P.; Vila, R.; Gfeller, C.F.; Cargill, M.; Mahalingam, H. Cosmetic Use of Three Topical Moisturizers Following Glycolic Acid Facial Peels. J. Cosmet. Dermatol. 2020, 19, 660–670. [Google Scholar] [CrossRef]
- Tang, S.C.; Yang, J.H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018, 23, 863. [Google Scholar] [CrossRef] [Green Version]
- Tung, R.C.; Bergfeld, W.F.; Vidimos, A.T.; Remzi, B.K. α-Hydroxy Acid-Based Cosmetic Procedures: Guidelines for Patient Management. J. Am. Acad. Dermatol. 2000, 1, 81–88. [Google Scholar] [CrossRef]
- Babilas, P.; Knie, U.; Abels, C. Cosmetic and Dermatologic Use of Alpha Hydroxy Acids. J. Dtsch. Dermatol. Ges. 2012, 10, 488–491. [Google Scholar] [CrossRef]
- Valle-González, E.R.; Jackman, J.A.; Yoon, B.K.; Mokrzecka, N.; Cho, N.J. PH-Dependent Antibacterial Activity of Glycolic Acid: Implications for Anti-Acne Formulations. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rozza, R.; Ferrante, F. Computational Study of Water Adsorption on Halloysite Nanotube in Different PH Environments. Appl. Clay Sci. 2020, 190, 105589. [Google Scholar] [CrossRef]
- Ferrante, F.; Armata, N.; Cavallaro, G.; Lazzara, G. Adsorption Studies of Molecules on the Halloysite Surfaces: A Computational and Experimental Investigation. J. Phys. Chem. C 2017, 121, 2951–2958. [Google Scholar] [CrossRef]
- Elumalai, D.N.; Lvov, Y.; Derosa, P. Implementation of a Simulation Model of the Controlled Release of Molecular Species from Halloysite Nanotubes. JEAS 2015, 5, 74–92. [Google Scholar] [CrossRef] [Green Version]
- Hári, J.; Polyák, P.; Mester, D.; Mičušík, M.; Omastová, M.; Kállay, M.; Pukánszky, B. Adsorption of an Active Molecule on the Surface of Halloysite for Controlled Release Application: Interaction, Orientation, Consequences. Appl. Clay Sci. 2016, 132–133, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Stam, C.H. The Crystal Structure of a Monoclinic Modification and the Refinement of a Triclinic Modification of Vitamin A Acid (Retinoic Acid), C20H28O2. Acta Crystallogr. B 1972, 28, 2936–2945. [Google Scholar] [CrossRef]
- Lou, B.; Hu, S. Different Hydrogen-Bonded Interactions in the Cocrystals of Nicotinamide with Two Aromatic Acids. J. Chem. Crystallogr. 2011, 41, 1663–1668. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; Castiñeiras, A.; Frontera, A.; Garciá-Santos, I.; González-Pérez, J.M.; Niclós-Gutiérrez, J.; Rodríguez-González, I.; Vílchez-Rodríguez, E.; Zarȩba, J.K. Recurrent Motifs in Pharmaceutical Cocrystals Involving Glycolic Acid: X-Ray Characterization, Hirshfeld Surface Analysis and DFT Calculations. CrystEngComm 2020, 22, 6674–6689. [Google Scholar] [CrossRef]
- Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Aguzzi, C.; Viseras, C.; Sainz-Díaz, C.I.; Cerezo, P. Assessment of Halloysite Nanotubes as Vehicles of Isoniazid. Colloids Surf. B 2017, 160. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Awad, M.E.; Sainz-Díaz, C.I. Molecular Modeling of Adsorption of 5-Aminosalicylic Acid in the Halloysite Nanotube. Minerals 2018, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, L.; Enyashin, A.N.; Seifert, G.; Duarte, H.A. Structural, Electronic, and Mechanical Properties of Single-Walled Halloysite Nanotube Models. J. Phys. Chem. C 2010, 114, 11358–11363. [Google Scholar] [CrossRef]
- Materials Studio, Version 2018; Biovia: San Diego, CA, USA, 2018.
- Vanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Viseras, C.; Aguzzi, C.; Sainz-Díaz, C.I. Molecular and Crystal Structure of Praziquantel. Spectroscopic Properties and Crystal Polymorphism. Eur. J. Pharm. Sci. 2016, 92, 266–275. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrego-Sánchez, A.; Sainz-Díaz, C.I.; Perioli, L.; Viseras, C. Theoretical Study of Retinol, Niacinamide and Glycolic Acid with Halloysite Clay Mineral as Active Ingredients for Topical Skin Care Formulations. Molecules 2021, 26, 4392. https://doi.org/10.3390/molecules26154392
Borrego-Sánchez A, Sainz-Díaz CI, Perioli L, Viseras C. Theoretical Study of Retinol, Niacinamide and Glycolic Acid with Halloysite Clay Mineral as Active Ingredients for Topical Skin Care Formulations. Molecules. 2021; 26(15):4392. https://doi.org/10.3390/molecules26154392
Chicago/Turabian StyleBorrego-Sánchez, Ana, Claro Ignacio Sainz-Díaz, Luana Perioli, and César Viseras. 2021. "Theoretical Study of Retinol, Niacinamide and Glycolic Acid with Halloysite Clay Mineral as Active Ingredients for Topical Skin Care Formulations" Molecules 26, no. 15: 4392. https://doi.org/10.3390/molecules26154392