Influence of Curing Time on the Microbiological Behavior of Bulk-Fill Nanohybrid Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Analysis of Specimen Morphology and Elemental Surface Distribution by Scanning Electron Microscopy (Sem) and Energy-Dispersive X-ray Spectroscopy (Eds)
2.3. Surface Roughness (SR) Analysis
2.4. Surface Free Energy (SFE) Analysis
2.5. Microbiological Procedures
2.6. Bacterial Adherence
2.7. Viable Biomass Assessment
2.8. Bioreactor Procedures
2.9. Statistical Analysis
3. Results
3.1. Surface Characterization
3.2. Microbiological Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbildo-Vega, H.; Lapinska, B.; Panda, S.; Lamas-Lara, C.; Khan, A.; Lukomska-Szymanska, M. Clinical Effectiveness of Bulk-Fill and Conventional Resin Composite Restorations: Systematic Review and Meta-Analysis. Polymers 2020, 12, 1786. [Google Scholar] [CrossRef]
- El-Banna, A.; Sherief, D.; Fawzy, A.S. Resin-based dental composites for tooth filling. In Advanced Dental Biomaterials; Woodhead Publishing: Cambridge, UK, 2019; pp. 127–173. [Google Scholar] [CrossRef]
- Reis, A.F.; Vestphal, M.; Amaral, R.C.D.; Rodrigues, J.; Roulet, J.-F.; Roscoe, M.G. Efficiency of polymerization of bulk-fill composite resins: A systematic review. Braz. Oral Res. 2017, 31, e59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czasch, P.; Ilie, N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin. Oral Investig. 2012, 17, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Haugen, H.J.; Marovic, D.; Par, M.; Le Thieu, M.K.; Reseland, J.E.; Johnsen, G.F. Bulk Fill Composites Have Similar Performance to Conventional Dental Composites. Int. J. Mol. Sci. 2020, 21, 5136. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Troconis, C.C.M.; Moreno, M.B.P.; Murillo-Gómez, F.; De Goes, M.F. Depth of cure of bulk fill resin compo-sites: A systematic review. J. Esthet. Restor. Dent. 2018, 30, 492–501. [Google Scholar] [CrossRef]
- Dikova, T.; Maximov, J.; Todorov, V.; Georgiev, G.; Panov, V. Optimization of Photopolymerization Process of Dental Composites. Processes 2021, 9, 779. [Google Scholar] [CrossRef]
- Fronza, B.M.; Ayres, A.P.; Pacheco, R.R.; Rueggeberg, F.; Dias, C.; Giannini, M. Characterization of Inorganic Filler Content, Mechanical Properties, and Light Transmission of Bulk-fill Resin Composites. Oper. Dent. 2017, 42, 445–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilie, N. Impact of light transmittance mode on polymerization kinetics in bulk-fill resin-based composites. J. Dent. 2017, 63, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N. Sufficiency of curing in high-viscosity bulk-fill resin composites with enhanced opacity. Clin. Oral Investig. 2019, 23, 747–755. [Google Scholar] [CrossRef]
- Abuelenain, D.A.; Abou Neel, E.A.; Al-Dharrab, A. Surface characterization and mechanical behavior of bulk fill versus in-cremental dental composites. Tanta Dent. J. 2017, 14, 56. [Google Scholar] [CrossRef]
- Ilie, N.; Stark, K. Curing behaviour of high-viscosity bulk-fill composites. J. Dent. 2014, 42, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Bilgili, D.; Dündar, A.; Barutçugil, Ç.; Tayfun, D.; Özyurt, Ö.K. Surface properties and bacterial adhesion of bulk-fill compo-site resins. J. Dent. 2018, 95, 103317. [Google Scholar] [CrossRef]
- Silva, R.A.B.; Nelson-Filho, P.; De-Oliveira, K.M.H.; Romualdo, P.C.; Gatón-Hernandez, P.; Aires, C.; Silva, L.A.B. Adhesion and Initial Colonization of Streptococcus mutans is Influenced by Time and Composition of Different Composites. Int. J. Odontostomatol. 2018, 12, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Huang, X.; Zhou, X.; Li, M.; Ren, B.; Peng, X.; Cheng, L. Influence of dental prosthesis and restorative materials in-terface on oral biofilms. Int. J. Mol. Sci. 2018, 19, 3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotti, N.; Comba, A.; Gambino, A.; Manzon, E.; Breschi, L.; Paolino, D.; Pasqualini, D.; Berutti, E. Influence of operator ex-perience on non-carious cervical lesion restorations: Clinical evaluation with different adhesive systems. Am. J. Dent. 2016, 29, 33–38. [Google Scholar]
- Marsh, P.D.; Zaura, E. Dental biofilm: Ecological interactions in health and disease. J. Clin. Periodontol. 2017, 44, S12–S22. [Google Scholar] [CrossRef]
- Peterson, S.N.; Meißner, T.; Su, A.I.; Snesrud, E.; Ong, A.C.; Schork, N.J.; Bretz, W.A. Functional expression of dental plaque microbiota. Front. Cell. Infect. Microbiol. 2014, 4, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senneby, A.; Davies, J.R.; Svensäter, G.; Neilands, J. Acid tolerance properties of dental biofilms in vivo. BMC Microbiol. 2017, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, E.; Ionescu, A.C. Oral Biofilms and Secondary Caries Formation. In Oral Biofilms and Modern Dental Materials: Ad-vances Toward Bioactivity; Ionescu, A.C., Hahnel, S., Eds.; Springer Nature: Basingstoke, UK, 2021; p. 19. [Google Scholar]
- Günther, E.; Fuchs, F.; Hahnel, S. Complex Polymeric Materials and Their Interaction with Microorganisms. In Oral Biofilms and Modern Dental Materials: Advances Toward Bioactivity; Ionescu, A.C., Hahnel, S., Eds.; Springer Nature: Basingstoke, UK, 2021; p. 71. [Google Scholar]
- Scotti, N.; Comba, A.; Cadenaro, M.; Fontanive, L.; Breschi, L.; Monaco, C.; Scotti, R. Effect of Lithium Disilicate Veneers of Different Thickness on the Degree of Conversion and Microhardness of a Light-Curing and a Dual-Curing Cement. Int. J. Prosthodont. 2016, 29, 384–388. [Google Scholar] [CrossRef] [Green Version]
- Scotti, N.; Venturello, A.; Migliaretti, G.; Pera, F.; Pasqualini, D.; Geobaldo, F.; Berutti, E. New-generation curing units and short irradiation time: The degree of conversion of microhybrid composite resin. Quintessence Int. 2011, 42, e89–e95. [Google Scholar]
- Brambilla, E.; Gagliani, M.; Ionescu, A.; Fadini, L.; García-Godoy, F. The influence of light-curing time on the bacterial colo-nization of resin composite surfaces. Dent. Mater. 2009, 25, 1067–1072. [Google Scholar] [CrossRef]
- Somacal, D.C.; Manfroi, F.B.; Monteiro, M.S.G.; Oliveira, S.D.; Bittencourt, H.R.; Borges, G.A.; Spohr, A.M. Effect of pH cy-cling followed by simulated toothbrushing on the surface roughness and bacterial adhesion of bulk-fill composite resins. Oper. Dent. 2020, 45, 209–218. [Google Scholar] [CrossRef]
- Park, C.; Park, H.; Lee, J.; Seo, H.; Lee, S. Surface Roughness and Microbial Adhesion After Finishing of Alkasite Restorative Material. J. Korean Acad. PEDTATRIC Dent. 2020, 47, 188–195. [Google Scholar] [CrossRef]
- Eren, M.M.; Ozan, G.; Erdemir, U.; Vatansever, C. Streptococcus Mutans adhesion to dental restorative materials after pol-ishing with various systems: A Confocal Microscopy study. Acta Microsc. 2021, 30, 102–113. [Google Scholar]
- Cazzaniga, G.; Ottobelli, M.; Ionescu, A.C.; Paolone, G.; Gherlone, E.; Ferracane, J.L.; Brambilla, E. In vitro biofilm for-mation on resin-based composites after different finishing and polishing procedures. J. Dent. 2017, 67, 43–52. [Google Scholar] [CrossRef]
- Hahnel, S.; Ionescu, A.; Cazzaniga, G.; Ottobelli, M.; Brambilla, E. Biofilm formation and release of fluoride from dental restorative materials in relation to their surface properties. J. Dent. 2017, 60, 14–24. [Google Scholar] [CrossRef]
- Ionescu, A.C.; Cazzaniga, G.; Ottobelli, M.; Ferracane, J.L.; Paolone, G.; Brambilla, E. In vitro biofilm formation on res-in-based composites cured under different surface conditions. J. Dent. 2018, 77, 78–86. [Google Scholar] [CrossRef]
- Ionescu, A.C.; Cazzaniga, G.; Ottobelli, M.; Garcia-Godoy, F.; Brambilla, E. Substituted Nano-Hydroxyapatite Toothpastes Reduce Biofilm Formation on Enamel and Resin-Based Composite Surfaces. J. Funct. Biomater. 2020, 11, 36. [Google Scholar] [CrossRef]
- Ionescu, A.; Brambilla, E.; Hahnel, S. Does recharging dental restorative materials with fluoride influence biofilm for-mation? Dent. Mater. 2019, 35, 1450–1463. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, T.; Okhotnikov, K.; Novikov, A.N.; Hennet, L.; Fischer, H.E.; Neuville, D.R.; Florian, P. Structure of stronti-um aluminosilicate glasses from molecular dynamics simulation, neutron diffraction, and nuclear magnetic resonance studies. J. Phys. Chem. B 2018, 122, 9567–9583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.; Wang, X.; Gao, X.; Chen, F.; Liang, X.; Li, D. Effects of surface properties of polymer-based restorative materi-als on early adhesion of Streptococcus mutans in vitro. J. Dent. 2016, 54, 33–40. [Google Scholar] [CrossRef]
- Schmalz, G.; Cieplik, F. Biofilms on Restorative Materials. Monogr. Oral Sci. 2021, 29, 155–194. [Google Scholar] [CrossRef] [PubMed]
- Renner, L.D.; Weibel, D.B. Physicochemical regulation of biofilm formation. MRS Bull. 2011, 36, 347–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliman, W.E.; Ali, A.I.; Elkhatib, W.F. Evaluation of surface roughness and Streptococcus mutans adhesion to bulk-fill res-in composites polished with different systems. Adv. Microbiol. 2019, 9, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Ionescu, A.C.; Hahnel, S.; König, A.; Brambilla, E. Resin composite blocks for dental CAD/CAM applications reduce biofilm formation in vitro. Dent. Mater. 2020, 36, 603–616. [Google Scholar] [CrossRef] [PubMed]
- An, J.S.; Kim, K.; Cho, S.; Lim, B.S.; Ahn, S.J. Compositional differences in multi-species biofilms formed on various ortho-dontic adhesives. Eur. J. Orthod. 2017, 39, 528–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busscher, H.J.; Rinastiti, M.; Siswomihardjo, W.; Van Der Mei, H.C. Biofilm Formation on Dental Restorative and Implant Materials. J. Dent. Res. 2010, 89, 657–665. [Google Scholar] [CrossRef]
- Tang, H.; Wang, A.; Liang, X.; Cao, T.; Salley, S.O.; McAllister, J.P., III.; Ng, K.S. Effect of surface proteins on Staphylococcus epidermidis adhesion and colonization on silicone. Colloids Surf. B Biointerfaces 2006, 51, 16–24. [Google Scholar] [CrossRef]
- Gyo, M.; Nikaido, T.; Okada, K.; Yamauchi, J.; Tagami, J.; Matin, K. Surface Response of Fluorine Polymer-Incorporated Resin Composites to Cariogenic Biofilm Adherence. Appl. Environ. Microbiol. 2008, 74, 1428–1435. [Google Scholar] [CrossRef] [Green Version]
- Ionescu, A.; Wutscher, E.; Brambilla, E.; Schneider-Feyrer, S.; Giessibl, F.J.; Hahnel, S. Influence of surface properties of res-in-based composites on in vitro S treptococcus mutans biofilm development. Eur. J. Oral Sci. 2012, 120, 458–465. [Google Scholar] [CrossRef]
- Hahnel, S.; Rosentritt, M.; Bürgers, R.; Handel, G. Surface properties and in vitro Streptococcus mutans adhesion to dental resin polymers. J. Mater. Sci. Mater. Electron. 2008, 19, 2619–2627. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Matin, K.; Nikaido, T.; Foxton, R.M.; Tagami, J. Effect of Surface Characteristics on Adherence of S. mutans Biofilms to Indirect Resin Composites. Dent. Mater. J. 2007, 26, 915–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshali, R.Z.; Salim, N.; Sung, R.; Satterthwaite, J.D.; Silikas, N. Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography. Dent. Mater. 2015, 31, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, J.N.; Lim, B.S.; Ahn, S.J. Urethane Dimethacrylate Influences the Cariogenic Properties of Streptococcus Mu-tans. Materials 2021, 14, 1015. [Google Scholar] [CrossRef] [PubMed]
- Hamama, H.H. Recent advances in posterior resin composite restorations. In Applications of Nanocomposite Materials in Dentistry; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2019; Volume 19, pp. 319–336. [Google Scholar]
- Ionescu, A.C.; Brambilla, E. Bioreactors: How to Study Biofilms In Vitro. In Oral Biofilms and Modern Dental Materials: Advances Toward Bioactivity; Ionescu, A.C., Hahnel, S., Eds.; Springer Nature: Basingstoke, UK, 2021; p. 37. [Google Scholar]
Codename | Material | Manufacturer | Organic Matrix | Filler (wt%, vol%) |
---|---|---|---|---|
S | SDR Surefil | Dentsply Sirona, York, PA, USA | UDMA, TEGDMA, EBPDMA | Ba-Al-F-Si glass, Sr-Al-F-Si glass 68 wt%, 45 vol% |
F | Filtek Bulk Fill Posterior | 3M, St Paul, MN, USA | AUDMA, UDMA, DDMA | Nanofillers and clusters of SiO2; ZrO; YbF3 64.5 wt%, 50.4 vol% |
V | Admira Fusion X-tra | VOCO GmbH, Cuxhaven, Germany | ORMOCER | Ba-Al-Si glass; SiO2 84 wt%, 65 vol% |
G (Control) | G-aenial Universal Flow | GC Corp. Europe, Leuven, Belgium | UDMA, TEGDMA, Co-monomer dimethacrylates. | SiO2 (16 nm), Sr glass (200 nm), LaF3 69 wt%, 50 vol% |
wt% | S | F | V | G (Control) |
---|---|---|---|---|
C | 40.05 (2.74) a | 33.34 (3.92) b | 22.59 (4.51) c | 24.72 (3.29) c |
O | 30.20 (0.62) c | 32.34 (1.43) b | 39.82 (1.65) a | 41.11 (0.89) a |
F | 3.81 (0.66) a | 1.39 (0.27) b | 0.00 (0.00) c | 0.99 (0.19) b |
Al | 4.23 (0.25) a | 0.00 (0.00) c | 3.10 (0.34) b | 4.47 (0.30) a |
Si | 10.33 (0.42) c | 18.66 (1.36) b | 22.76 (1.99) a | 18.22 (1.43) b |
Sr | 5.01 (0.56) b | 0.00 (0.00) c | 0.00 (0.00) c | 10.49 (0.69) a |
Zr | 0.00 (0.00) b | 10.80 (1.35) a | 0.00 (0.00) b | 0.00 (0.00) b |
Ba | 6.37 (1.04) b | 0.00 (0.00) c | 11.78 (1.14) a | 0.00 (0.00) c |
Yb | 0.00 (0.00) b | 3.47 (0.38) a | 0.00 (0.00) b | 0.00 (0.00) b |
Inorganic fraction | 29.75 (2.39) b | 34.33 (2.51) a | 37.64 (3.36) a | 34.18 (2.41) a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionescu, A.C.; Comba, A.; Brambilla, E.; Ilie, N.; Breschi, L.; Cadenaro, M.; Scotti, N. Influence of Curing Time on the Microbiological Behavior of Bulk-Fill Nanohybrid Resin Composites. Polymers 2021, 13, 2948. https://doi.org/10.3390/polym13172948
Ionescu AC, Comba A, Brambilla E, Ilie N, Breschi L, Cadenaro M, Scotti N. Influence of Curing Time on the Microbiological Behavior of Bulk-Fill Nanohybrid Resin Composites. Polymers. 2021; 13(17):2948. https://doi.org/10.3390/polym13172948
Chicago/Turabian StyleIonescu, Andrei C., Allegra Comba, Eugenio Brambilla, Nicoleta Ilie, Lorenzo Breschi, Milena Cadenaro, and Nicola Scotti. 2021. "Influence of Curing Time on the Microbiological Behavior of Bulk-Fill Nanohybrid Resin Composites" Polymers 13, no. 17: 2948. https://doi.org/10.3390/polym13172948