Heavy Metals and Trace Elements in Human Breast Milk from Industrial/Mining and Agricultural Zones of Southeastern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Materials and Reagents
2.3. Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Relationship between Levels of Inorganic Pollutants and Characteristics of Mothers
3.2. Maternal Diet and Habits
3.3. Children’s Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Guideline: Counselling of Women to Improve Breastfeeding Practices. 2018. Available online: https://www.who.int/publications/i/item/9789241550468 (accessed on 29 March 2021).
- Ribas-Fitó, N.; Cardo, E.; Sala, M.; Eulàlia de Muga, M.; Mazón, C.; Verdú, A.; Kogevinas, M.; Grimalt, J.O.; Sunyer, J. Breastfeeding, exposure to organochlorine compounds, and neurodevelopment in infants. Pediatrics 2003, 111 Pt 1, 580–585. [Google Scholar] [CrossRef] [Green Version]
- Vreugdenhil, H.J.; Van Zanten, G.A.; Brocaar, M.P.; Mulder, P.G.; Weisglas-Kuperus, N. Prenatal exposure to polychlorinated biphenyls and breastfeeding: Opposing effects on auditory P300 latencies in 9-year-old Dutch children. Dev. Med. Child. Neurol. 2004, 46, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Mead, M.N. Contaminants in human milk: Weighing the risks against the benefits of breastfeeding. Environ. Health Perspect. 2008, 116, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Needham, L.L.; Wang, R.Y. Analytic considerations for measuring environmental chemicals in breast milk. Environ. Health Perspect. 2002, 110, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Solomon, G.M.; Weiss, P.M. Chemical Contaminants in Breast Milk: Time Trends and Regional Variability. Environ. Health Perspect. 2002, 110, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Cerna, M.; Spevackova, V.; Batariova, A.; Smid, J.; Cejchanova, M.; Ocadlikova, D.; Bavorová, H.; Beneš, B.; Kubínová, R. Human biomonitoring system in the Czech Republic. Int. Environ. Health 2007, 210, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Pajewska-Szmyt, M.; Sinkiewicz-Darol, E.; Gadzała-Kopciuch, R. The impact of environmental pollution on the quality of mother’s milk. Environ. Sci. Pollut. Res. Int. 2019, 26, 7405–7427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obeng-Gyasi, E. Lead exposure and oxidative stress—A life course approach in US adults. Toxics 2018, 6, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuh, D.; Ben-Shlomo, Y.; Lynch, J.; Hallqvist, J.; Power, C. Life course epidemiology. J. Epidemiol. Community Health 2003, 57, 778–783. [Google Scholar] [CrossRef]
- Benedetti, M.; Iavarone, I.; Comba, P.; Lavarone, I. Cancer risk associated with residential proximity to industrial sites: A review. Arch. Environ. Health 2001, 56, 342–349. [Google Scholar] [CrossRef]
- Ramade, F. Assessment of damage to ecosystems: A major issue in ecotoxicological research. Qual. Assur. 1997, 5, 199–220. [Google Scholar]
- Navarro, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Vidal, J.; Marimón, J. Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, SE Spain). Chemosphere 2006, 63, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, V.; Woittiez, J. Trace elements in human clinical specimens: Evaluation of literature data to identify reference values. Clin. Chem. 1988, 34, 474–481. [Google Scholar] [CrossRef]
- Casey, C.; Smith, A.; Zhang, P.; Jensen, R. Microminerals in human and animal milks. In Handbook of Milk Composition; Academic Press: Cambridge, MA, USA, 1995; pp. 622–674. [Google Scholar]
- Ettinger, A.S.; Téllez-Rojo, M.M.; Amarasiriwardena, C.; González-Cossío, T.; Peterson, K.E.; Aro, A.; Hu, H.; Hernández-Avila, M. Levels of lead in breast milk and their relation to maternal blood and bone lead levels at one month postpartum. Environ. Health Perspect. 2004, 112, 926–931. [Google Scholar] [CrossRef] [PubMed]
- WHO. Fourth WHO-Coordinated Survey of Human Milk for Persistent Organic Pollutants in Cooperation with UNEP; Guidelines for Developing a National Protocol; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Jerez, S.; Motas, M.; Cánovas, R.A.; Talavera, J.; Almela, R.M.; Del Río, A.B. Accumulation and tissue distribution of heavy metals and essential elements in loggerhead turtles (Caretta caretta) from Spanish Mediterranean coastline of Murcia. Chemosphere 2010, 78, 256–264. [Google Scholar] [CrossRef] [PubMed]
- WHO. Minor and Trace Elements in Breast Milk: Report of a Joint W.H.O.; World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- WHO Infant. Standards: WHO Child Growth Standards/Weight-for-Age; WHO. 2009. Available online: https://www.who.int/tools/child-growth-standards/standards/weight-for-age (accessed on 29 March 2021).
- Castro, F.; Harari, F.; Llanos, M.; Vahter, M.; Ronco, A.M. Maternal-child transfer of essential and toxic elements through breast milk in a mine-waste polluted area. Am. J. Perinatol. 2014, 31, 993–1002. [Google Scholar] [CrossRef]
- Leotsinidis, M.; Alexopoulos, A.; Kostopoulou-Farri, E. Toxic and essential trace elements in human milk from Greek lactating women: Association with dietary habits and other factors. Chemosphere 2005, 61, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Ursinyova, M.; Masanova, V. Cadmium, lead and mercury in human milk from Slovakia. Food Addit. Contam. 2005, 22, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Björklund, K.L.; Vahter, M.; Palm, B.; Grandér, M.; Lignell, S.; Berglund, M. Metals and trace element concentrations in breast milk of first time healthy mothers: A biological monitoring study. Environ. Health Glob. Access Sci. Source 2012, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, E.; Delgado, E.; Díaz, C. Concentrations of cadmium and lead in different types of milk. Unters 1999, 208, 162–168. [Google Scholar] [CrossRef]
- Almeida, A.A.; Lopes, C.M.P.V.; Silva, A.M.S.; Barrado, E. Trace elements in human milk: Correlation with blood levels, inter-element correlations and changes in concentration during the first month of lactation. J. Trace Elem. Med. Biol. Organ. Soc. Miner. Trace Elem. (GMS) 2008, 22, 196–205. [Google Scholar] [CrossRef]
- Abballe, A.; Ballard, T.J.; Dellatte, E.; di Domenico, A.; Ferri, F.; Fulgenzi, A.R.; Grisanti, G.; Iacovella, N.; Ingelido, A.M.; Malisch, R.; et al. Persistent environmental contaminants in human milk: Concentrations and time trends in Italy. Chemosphere 2008, 73 (Suppl. 1), 220–227. [Google Scholar] [CrossRef]
- Ettinger, A.S.; Roy, A.; Amarasiriwardena, C.J.; Smith, D.; Lupoli, N.; Mercado-García, A.; Lamadrid-Figueroa, H.; Tellez-Rojo, M.M.; Hu, H.; Hernández-Avila, M. Maternal blood, plasma, and breast milk lead: Lactational transfer and contribution to infant exposure. Environ. Health Perspect. 2014, 122, 87–92. [Google Scholar] [CrossRef]
- EFSA. Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 151. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A. Cadmium, lead, copper and zinc in breast milk in Poland. Biol. Trace Elem. Res. 2014, 157, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Bassil, M.; Daou, F.; Hassan, H.; Yamani, O.; Kharma, J.A.; Attieh, Z.; Elaridi, J. Lead, cadmium and arsenic in human milk and their socio-demographic and lifestyle determinants in Lebanon. Chemosphere 2018, 191, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.M.; Trevilato, T.M.B.; Segura-Muñoz, S.I.; Aragon, D.C.; Alves, L.G.; Nadal, M.; Marquès, M.; Domingo, J.L.; Sierra, J.; Camelo, J.S., Jr. Essential and toxic elements in human milk concentrate with human milk lyophilizate: A preclinical study. Environ. Res. 2020, 188, 109733. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Pietschnig, B.; Wittmann, K.J.; Lischka, A. Human milk mercury (Hg) and lead (Pb) levels in Vienna. Adv. Exp. Med. Biol. 2000, 478, 387–388. [Google Scholar]
- Gundacker, C.; Pietschnig, B.; Wittmann, K.J.; Lischka, A.S.; Alzer, H.; Hohenauer, L.; Schuster, E. Lead and mercury in breast milk. Pediatrics 2002, 110, 873–878. [Google Scholar] [CrossRef]
- Vimy, M.J.; Hooper, D.E.; King, W.W.; Lorscheider, F.L. Mercury from maternal «silver» tooth fillings in sheep and human breast milk. A source of neonatal exposure. Biol. Trace Elem. Res. 1997, 56, 143–152. [Google Scholar] [CrossRef]
- Schramel, P.; Hasse, S.; Ovcar-Pavlu, J. Selenium, cadmium, lead, and mercury concentrations in human breast milk, in placenta, maternal blood, and the blood of the newborn. Biol. Trace Elem. Res. 1988, 15, 111–124. [Google Scholar] [CrossRef]
- Drexler, H.; Schaller, K.H. The mercury concentration in breast milk resulting from amalgam fillings and dietary habits. Environ. Res. 1998, 77, 124–129. [Google Scholar] [CrossRef]
- Oskarsson, A.; Schültz, A.; Skerfving, S.; Hallén, I.P.; Ohlin, B.; Lagerkvist, B.J. Total and inorganic mercury in breast milk in relation to fish consumption and amalgam in lactating women. Arch. Environ. Health 1996, 51, 234–241. [Google Scholar] [CrossRef]
- Uhnák, J.; Ursinyova, M.; Veningerova, M.; Prachar, V.; Rosival, L.; Hladikova, V. Evaluation of Impact of Chemical Substances on Health of Children, Final Report of the Research Project; Institute of Preventive and Clinical Medicine Bratislava: Bratislava, Slovakia, 1994. [Google Scholar]
- Yalçin, S.S.; Yurdakök, K.; Yalçin, S.; Engür-Karasimav, D.; Coşkun, T. Maternal and environmental determinants of breast-milk mercury concentrations. Turk. J. Pediatr. 2010, 52, 1–9. [Google Scholar]
- Kunter, İ.; Hürer, N.; Gülcan, H.O.; Öztürk, B.; Doğan, İ.; Şahin, G. Assessment of Aflatoxin M1 and Heavy Metal Levels in Mothers Breast Milk in Famagusta, Cyprus. Biol. Trace Elem. Res. 2017, 175, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Wasowicz, W.; Gromadzinska, J.; Szram, K.; Rydzynski, K.; Cieslak, J.; Pietrzak, Z. Selenium, zinc, and copper concentrations in the blood and milk of lactating women. Biol. Trace Elem. Res. 2001, 79, 221–233. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Shinwari, N.; Mashhour, A. Heavy metal concentrations in the breast milk of Saudi women. Biol. Trace Elem. Res. 2003, 96, 21–37. [Google Scholar] [CrossRef]
- Adesiyan, A.A.; Akiibinu, M.O.; Olisekodiaka, M.J.; Onuegbu, A.J.; Adeyeye, A.D. Concentrations of some biochemical parameters in breast milk of a population of Nigerian nursing mothers using hormonal contraceptives. Pak. J. Nutr. 2011, 10, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Kılıç Altun, S.; Dinç, H.; Temamoğulları, F.K.; Paksoy, N. Analyses of Essential Elements and Heavy Metals by Using ICP-MS in Maternal Breast Milk from Şanlıurfa, Turkey. Int. J. Anal. Chem. 2018, 2018, 1784073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samiee, F.; Vahidinia, A.; Taravati Javad, M.; Leili, M. Exposure to heavy metals released to the environment through breastfeeding: A probabilistic risk estimation. Sci. Total Environ. 2019, 650 (Pt. 2), 3075–3083. [Google Scholar] [CrossRef]
- Parr, R.M.; DeMaeyer, E.M.; Iyengar, V.G.; Byrne, A.R.; Kirkbright, G.F.; Schöch, G.; Niinistö, L.; Pineda, O.; Vis, H.L.; Hofvander, Y.; et al. Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire. Results from a WHO/IAEA joint project. Biol. Trace Elem. Res. 1991, 29, 51–75. [Google Scholar] [CrossRef]
- Silvestre, M.D.; Lagarda, M.J.; Farré, R.; Martínez-Costa, C.; Brines, J.; Molina, A.; Clemente, G. A study of factors that may influence the determination of copper, iron, and zinc in human milk during sampling and in sample individuals. Biol. Trace Elem. Res. 2000, 76, 217–227. [Google Scholar] [CrossRef]
- Maru, M.; Birhanu, T.; Tessema, D.A. Calcium, magnesium, iron, zinc and copper, compositions of human milk from populations with cereal and «enset» based diets. Ethiop. J. Health Sci. 2013, 23, 90–97. [Google Scholar] [PubMed]
- Nakamori, M.; Ninh, N.X.; Isomura, H.; Yoshiike, N.; Hien, V.T.T.; Nhug, B.T.; Van Nhien, N.; Nakano, T.; Khan, N.C.; Yamamoto, S. Nutritional status of lactating mothers and their breast milk concentration of iron, zinc and copper in rural Vietnam. J. Nutr. Sci. Vitaminol. 2009, 55, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Casey, C.E.; Neville, M.C. Studies in human lactation 3: Molybdenum and nickel in human milk during the first month of lactation. Am. J. Clin. Nutr. 1987, 45, 921–926. [Google Scholar] [CrossRef] [Green Version]
- Cinar, N.; Ozdemir, S.; Yucel, O.; Ucar, F. In which regions is breast-feeding safer from the impact of toxic elements from the environment? Bosn. J. Basic Med. Sci. 2011, 11, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Casey, C.E.; Neville, M.C.; Hambidge, K.M. Studies in human lactation: Secretion of zinc, copper, and manganese in human milk. Am. J. Clin. Nutr. 1989, 49, 773–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocho, J.A.; Cervilla, J.R.; Rey-Goldar, M.L.; Fdez-Lorenzo, J.R.; Fraga, J.M. Chromium content in human milk, cow’s milk, and infant formulas. Biol. Trace Elem. Res. 1992, 32, 105–107. [Google Scholar] [CrossRef]
- Anderson, R.A.; Bryden, N.A.; Patterson, K.Y.; Veillon, C.; Andon, M.B.; Moser-Veillon, P.B. Breast milk chromium and its association with chromium intake, chromium excretion, and serum chromium. Am. J. Clin. Nutr. 1993, 57, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Takada, A.; Hirose, J.; Endô, M.; Fukuwatari, T.; Shibata, K. Molybdenum and chromium concentrations in breast milk from Japanese women. Biosci. Biotechnol. Biochem. 2008, 72, 2247–2250. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Yue, B.; Yang, Z.; Li, X.; Wu, Y.; Yin, S. Determination of 24 minerals in human milk by inductively coupled plasma mass spectrometry with microwave digestion. Wei Sheng Yan Jiu J. Hyg. Res. 2013, 42, 504–509. [Google Scholar]
- Robberecht, H.; Benemariya, H.; Deelstra, H. Daily dietary intake of copper, zinc, and selenium of exclusively breast-fed infants of middle-class women in Burundi, Africa. Biol. Trace Elem. Res. 1995, 49, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Krachler, M.; Li, F.S.; Rossipal, E.; Irgolic, K.J. Changes in the concentrations of trace elements in human milk during lactation. J. Trace Elem. Med. Biol. Organ. Soc. Miner. Trace Elem. (GMS) 1998, 12, 159–176. [Google Scholar] [CrossRef]
- Torres, M.A.; Verdoy, J.; Alegria, A.; Barbera, R.; Farre, R.; Lagarda, M.J. Selenium contents of human milk and infant formulas in Spain. Sci. Total Environ. 1999, 228, 185–192. [Google Scholar] [CrossRef]
- Yanadarg, R.; Orak, H. Selenium content of milk and milk products of Turkey. II. Biol. Trace Elem. Res. 1999, 68, 79–95. [Google Scholar]
- Dylewski, M.L.; Neville, M.C.; Picciano, M.F. Longitudinal profile of human milk selenium from birth to 1 year. FASEB 2001, 15, 599. [Google Scholar]
- Hannan, M.A.; Dogadkin, N.N.; Ashur, I.A.; Markus, W.M. Copper, selenium, and zinc concentrations in human milk during the first three weeks of lactation. Biol. Trace Elem. Res. 2005, 107, 11–20. [Google Scholar] [CrossRef]
- Dörner, K.; Dziadzka, S.; Höhn, A.; Sievers, E.; Oldigs, H.D.; Schulz-Lell, G.; Schaub, J. Longitudinal manganese and copper balances in young infants and preterm infants fed on breast milk and adapted cow’s milk formulas. Br. J. Nutr. 1989, 61, 559–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaud, J.; Favier, A. Copper, iron, manganese and zinc contents in human colostrum and transitory milk of French women. Sci. Total Environ. 1995, 159, 9–15. [Google Scholar] [CrossRef]
- Cesar, A.; Marín, A.; Marin-Guirao, L.; Vita, R.; Lloret, J.; Del Valls, T.A. Integrative ecotoxicological assessment of sediment in Portmán Bay (southeast Spain). Ecotoxicol. Environ. Saf. 2009, 72, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sirvent, C.; García-Lorenzo, M.L.; Hernández-Pérez, C.; Martínez-Sánchez, M.J. Assessment of potentially toxic element contamination in soils from Portman Bay (SE, Spain). J. Soils Sediments 2018, 18, 2248–2258. [Google Scholar] [CrossRef]
- Mandić, M.L.; Grgić, J.; Grgić, Z.; Seruga, M.; Hasenay, D. Aluminum levels in human milk. Sci. Total Environ. 1995, 170, 165–170. [Google Scholar] [CrossRef]
- Nishijo, M.; Nakagawa, H.; Honda, R.; Tanebe, K.; Saito, S.; Teranishi, H.; Tawara, K. Effects of maternal exposure to cadmium on pregnancy outcome and breast milk. Occup. Environ. Med. 2002, 59, 394–397. [Google Scholar] [CrossRef] [Green Version]
- García-Esquinas, E.; Pérez-Gómez, B.; Fernández, M.A.; Pérez-Meixeira, A.M.; Gil, E.; de Paz, C.; Iriso, A.; Sanz, J.C.; Astray, J.; Cisneros, M.; et al. Mercury, lead and cadmium in human milk in relation to diet, lifestyle habits and sociodemographic variables in Madrid (Spain). Chemosphere 2011, 85, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Mandour, R.A.; Ghanem, A.A.; El-Azab, S.M. Correlation between lead levels in drinking water and mothers’ breast milk: Dakahlia, Egypt. Environ. Geochem. Health 2013, 35, 251–256. [Google Scholar] [CrossRef]
- Satarug, S.; Ujjin, P.; Vanavanitkun, Y.; Baker, J.R.; Moore, M.R. Influence of body iron store status and cigarette smoking on cadmium body burden of healthy Thai women and men. Toxicol. Lett. 2004, 148, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Pietschnig, B.; Wittmann, K.J.; Salzer, H.; Stöger, H.; Reimann-Dorninger, G.; Schuster, E.; Lischka, A. Smoking, cereal consumption, and supplementation affect cadmium content in breast milk. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Örün, E.; Yalçın, S.S.; Aykut, O.; Orhan, G.; Morgil, G.K.; Yurdakök, K.; Uzun, R. Breast milk lead and cadmium levels from suburban areas of Ankara. Sci. Total Environ. 2011, 409, 2467–2472. [Google Scholar] [CrossRef]
- Chao, H.H.; Guo, C.H.; Huang, C.B.; Chen, P.C.; Li, H.C.; Hsiung, D.; Chou, Y. Arsenic, cadmium, lead, and aluminium concentrations in human milk at early stages of lactation. Pediatr. Neonatol. 2014, 55, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A. Toxicología del cadmio. Conceptos actuales para evaluar exposición ambiental u ocupacional con indicadores biológicos. An. Fac. Med. 2002, 63, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Arain, S.S.; Gul Kazi, T.; Afridi, H.I.; Brahman, K.D.; Eemuliah, N.; Shah, F.; Mughal, M.A. Arsenic content in smokeless tobacco products consumed by the population of Pakistan: Related health risk. J. AOAC Int. 2014, 97, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Turan, S.; Saygi, S.; Kiliç, Z.; Acar, O. Determination of heavy metal contents in human colostrum samples by electrothermal atomic absorption spectrophotometry. J. Trop Pediatr. 2001, 47, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, K.K.; Engström, A.; Hamadani, J.D.; Tofail, F.; Rasmussen, K.M.; Vahter, M. Pre- and postnatal arsenic exposure and body size to 2 years of age: A cohort study in rural Bangladesh. Environ. Health Perspect. 2012, 120, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
Mother Characteristics | Industrial/Mining Area | Agricultural Area | p |
---|---|---|---|
Age (years) (mean ± SD) * | 32.57 ± 4.25 | 33.93 ± 3.43 | 0.297 |
Weight (kg) (mean ± SD) * | 67.17 ± 12.43 | 58.96 ± 8.59 | 0.018 |
Size (cm) (mean ± SD) * | 163.82 ± 6.08 | 162.33 ± 4.22 | 0.517 |
N of children (mean ± SD) * | 1.91 ± 0.70 | 1.40 ± 0.50 | 0.013 |
Housewife (n, %) ** | 11 (31.4) | 2 (13.3) | 0.163 |
Exclusive breastfeeding (n, %) ** | 24 (68.6) | 7 (46.7) | 0.341 |
Years living in the area (mean ± SD) * | 19.48 ± 12.83 | 15.26 ± 12.48 | 0.265 |
Total months of breastfeeding in previous children (mean ± SD) * | 13.22 ± 15.83 | 7.33 ± 12.65 | 0.083 |
Child characteristics | |||
Age (months) (mean ± SD) * | 6.60 ± 7.65 | 9.73 ± 10.20 | 0.343 |
Birth weight (g) (mean ± SD) * | 3312.25 ± 473.70 | 3105.33 ± 433.68 | 0.178 |
Current weight (g) (mean ± SD) * | 7202.15 ± 3039.05 | 6217.13 ± 3786.23 | 0.452 |
Maternal habits | |||
Smoker or ex-smoker (n, %) ** | 12 (34.3) | 5 (33.3) | 0.608 |
Glasses of water a day (n, %) *** | 0.375 | ||
<4 | 4 (11.4) | 0 | |
4–5 | 13 (37.1) | 7 (46.7) | |
≥6 | 18 (51.4) | 8 (53.3) | |
Maternal nutrition | |||
Fruit consumption (n, %) ** | 0.666 | ||
Weekly | 2 (5.7) | 1 (6.7) | |
Daily | 33 (94.3) | 14 (93.3) | |
Vegetable consumption (n, %) ** | 0.476 | ||
Weekly | 3 (8.6) | 2 (13.3) | |
Daily | 32 (91.4) | 13 (86.7) | |
Blue fish consumption (n, %) *** | 0.083 | ||
Never | 12 (34.3) | 10 (66.7) | |
1–3 times a month (n, %) *** | 14 (40) | 2 (13.3) | |
Weekly | 9 (25.7) | 3 (20) | |
White fish consumption (n, %) *** | 0.560 | ||
Never | 2 (5.7) | 2 (13.3) | |
1–3 times a month | 6 (17.1) | 1 (6.7) | |
Weekly | 27 (77.2) | 12 (80) | |
Meat consumption (n, %) *** | 0.165 | ||
Never | 2 (5.7) | 3 (20) | |
1–3 times a month | 6 (17.1) | 5 (33.3) | |
Weekly | 22 (62.9) | 5 (33.3) | |
Daily | 5 (14.3) | 2 (13.3) |
Microwave Milestone: Ethos Sel. Model. | |||
---|---|---|---|
Characteristics | “Organic Up 0.4” Program | ||
Closed System | Time (min) | T (°C) | Power (W) |
6-sample capacity | 0 | 20 | - |
High-pressure rotor | 5 | 85 | 700 |
HPR 1000/6M | 3 | 145 | 500 |
Automatic temperature sensor | 30 | 210 | 1.000 |
Inorganic Elements | Min | Max | Mean | SD | P25 | Median | P75 | Detection Percentage | Percentage that Exceeds the Maximum Tolerable Limit (MTL μg/L) Established by the WHO | Tolerable Daily Intake (TDI) (μg/kg/day) |
---|---|---|---|---|---|---|---|---|---|---|
Al | 0 | 882.4 | 34.3 | 133.0 | 0 | 0 | 0 | 18% | 18% * | 1000 |
Zn | 0 | 7511.1 | 1402.6 | 1742.7 | 0 | 901.9 | 1851.3 | 72% | 30.5% (2000) | 300 |
As | 0 | 15.3 | 0.9 | 2.71 | 0 | 0 | 0 | 12% | 12% (0.6) | 0.3 |
Cd | 0 | 7.8 | 0.4 | 1.6 | 0 | 0 | 0 | 6% | 6% (1) | 0.4 |
Pb | 0 | 89.2 | 5.2 | 16.7 | 0 | 0 | 1.9 | 30% | 12% (5) | 3.6 |
Hg | 0 | 83.6 | 5.6 | 12.4 | 0 | 2.4 | 6.5 | 58% | 54% (1.7) | 0.7 |
Cr | 0 | 454.7 | 16.1 | 63.6 | 3.3 | 5.4 | 10.1 | 99% | 92% (1.5) | 0.9 |
Mn | 0 | 450.0 | 10.7 | 63.6 | 0 | 0 | 0 | 16% | 12% (4) | 140 |
Fe | 0 | 7205.8 | 679.1 | 1387.3 | 0 | 195.7 | 518.5 | 66% | 18% (720) | 114 |
Ni | 0 | 212.5 | 25.3 | 33.8 | 2.5 | 17.8 | 34.6 | 78% | 54% (16) | 12 |
Cu | 0.93 | 1217.6 | 368.5 | 301.0 | 160.2 | 262.8 | 486.3 | 100% | 36% (310) | 71.4 |
Se | 0 | 273.0 | 44.5 | 49.5 | 0 | 35.1 | 64.6 | 74% | 60% (24) | 30 |
Place of Residence | Exclusive Breastfeeding | Glasses of Water A Day | Vegetarian | Fruit Consumption | Smoker | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inorganic Elements | Agricultural | Mining | * | Yes | No | * | <4 | 4–5 | ≥6 | ** | yes | no | * | Weekly | Daily | ** | Yes | No | * |
Mean (SD) | Mean (SD) | p | Mean (SD) | Mean (SD) | p | Mean (SD) | Mean (SD) | Mean (SD) | p | Mean (SD) | Mean (SD) | p | Mean (SD) | Mean (SD) | p | Mean (SD) | Mean (SD) | p | |
Al | 37.6 (84.1) | 32.7 (153.5) | 0.418 | 36.5 (138.5) | 9.6 (19.2) | 0.790 | 0 (0) | 6.2 (28.1) | 61.1 (180.3) | 0.049 | 9.6 (19.2) | 36.5 (138.5) | 0.790 | 10.43 (18.1) | 35.9 (137.1) | 0.604 | 71.1 (220.4) | 15.4 (41.6) | 0.915 |
Zn | 1096.6 (1583) | 1560.1 (1823) | 0.268 | 1462.6 (1795) | 712.2 (778.5) | 0.575 | 2090.1 (3636) | 1282.0 (1202) | 1389.4 (1783) | 0.837 | 755.1 (636.4) | 1458.9 (1800) | 0.745 | 744.73 (653.2) | 1445 (1785) | 0.515 | 1163 (1163) | 1525.8 (1982) | 0.836 |
As | 1.4 (2.6) | 0.60 (2.8) | 0.082 | 0.44 (1.4) | 5.7 (7.3) | 0.008 | 0 (0) | 0.7 (1.9) | 1.0 (3.3) | 0.724 | 8.6 (4.6) | 0.2 (0.93) | 0.000 | 0 (0) | 0.92 (2.8) | 0.442 | 2.0 (4.25) | 0.3 (1.1) | 0.054 |
Cd | 0.7 (2.2) | 0.2 (1.3) | 0.223 | 0.1 (0.7) | 3.9 (4.4) | <0.001 | 0 (0) | 0.23 (1.0) | 0.5 (2.0) | 0.797 | 5.0 (3.6) | 0.0 (0.0) | <0.001 | 0 (0) | 0.42 (1.7) | 0.624 | 1.2 (2.7) | 0.0 (0.0) | 0.014 |
Pb | 7.2 (18.2) | 4.1 (16.1) | 0.114 | 5.4 (17.4) | 2.8 (3.2) | 0.270 | 0 (0) | 0.24 (0.6) | 9.7 (22.4) | 0.014 | 3.5 (2.4) | 5.3 (17.5) | 0.005 | 1.28 (2.2) | 5.42 (17.2) | 0.655 | 10.4 (26.0) | 2.5 (8.4) | 0.063 |
Hg | 2.3 (3.2) | 7.2 (14.9) | 0.170 | 5.2 (12.5) | 10.3 (12.0) | 0.528 | 7.0 (8.9) | 7.1 (18.3) | 4.0 (5.7) | 0.884 | 9.5 (9.5) | 5.2 (12.7) | 0.158 | 5.26 (4.9) | 5.57 (12.8) | 0.941 | 4.9 (6.4) | 5.9 (14.7) | 0.807 |
Cr | 33.5 (108.8) | 7.1 (4.7) | 0.690 | 17.1 (66.2) | 4.7 (1.5) | 0.474 | 7.0 (2.8) | 7.2 (4.6) | 24.3 (88.0) | 0.797 | 4.4 (2.1) | 17.1 (66.2) | 0.317 | 6.05 (4.9) | 16.73 (65.5) | 0.511 | 32.3 (108.9) | 7.8 (6.6) | 0.493 |
Mn | 29.1 (108.7) | 1.2 (4.1) | 0.261 | 11.2 (66.4) | 4.6 (6.1) | 0.003 | 0 (0) | 2.4 (5.9) | 18.7 (88.1) | 0.633 | 5.0 (7.0) | 11.2 (66.3) | 0.003 | 0 (0) | 11.37 (65.6) | 0.854 | 27.9 (108.8) | 1.8 (6.1) | 0.086 |
Fe | 1081.7 (2031) | 471.7 (868.4) | 0.386 | 661.5 (1413) | 881.6 (1194) | 0.229 | 789.1 (1256) | 471.1 (911.6) | 822.0 (1701) | 0.715 | 595.5 (842) | 686.3 (1431) | 0.584 | 105.03 (145.7) | 715.71 (1424) | 0.416 | 668.3 (1743) | 684.6 (1195) | 0.458 |
Ni | 27.2 (26.3) | 24.3 (37.5) | 0.440 | 26.5 (34.9) | 10.6 (8.1) | 0.281 | 17.4 (23.79) | 22.0 (15.8) | 28.9 (44.1) | 0.811 | 10.2 (2.2) | 26.6 (35.0) | 0.281 | 6.59 (8.8) | 26.45 (34.5) | 0.169 | 30.9 (51.4) | 22.4 (20.1) | 0.719 |
Cu | 404.6 (365.8) | 349.9 (266.0) | 0.814 | 377.6 (304.2) | 264.3 (276.0) | 0.211 | 526.6 (448.2) | 308.0 (166.3) | 390.7 (353.5) | 0.853 | 184.7 (62.1) | 384.5 (308.4) | 0.198 | 116.29 (42.2) | 384.63 (303.4) | 0.021 | 334.5 (304.1) | 386.1 (302.6) | 0.467 |
Se | 33.5 (27.2) | 50.2 (57.4) | 0.489 | 43.7 (48.3) | 53.7 (70.5) | 0.914 | 90.62 (66.63) | 41.38 (36.36) | 39.7 (53.83) | 0.203 | 22.3 (7.7) | 46.4 (51.2) | 0.367 | 53.82 (58.3) | 43.90 (49.6) | 0.695 | 49.2 (64.1) | 42.1 (41.0) | 0.893 |
Inorganic Elements | Age | Birth Weight | Current Weight | |
---|---|---|---|---|
Al | rs | 0.051 | −0.214 | −0.062 |
p | 0.726 | 0.136 | 0.669 | |
Zn | rs | −0.392 ** | 0.151 | −0.227 |
p | 0.005 | 0.294 | 0.112 | |
As | rs | −0.269 | −0.392 ** | −0.250 |
p | 0.059 | 0.005 | 0.080 | |
Cd | rs | −0.353 * | −0.249 | −0.294 * |
p | 0.012 | 0.081 | 0.038 | |
Pb | rs | −0.072 | −0.125 | −0.160 |
p | 0.618 | 0.387 | 0.267 | |
Hg | rs | −0.077 | 0.045 | 0.019 |
p | 0.596 | 0.759 | 0.897 | |
Cr | rs | 0.067 | 0.044 | −0.083 |
p | 0.644 | 0.760 | 0.564 | |
Mn | rs | −0.182 | −0.118 | −0.269 |
p | 0.206 | 0.415 | 0.059 | |
Fe | rs | −0.045 | −0.007 | −0.056 |
p | 0.754 | 0.959 | 0.697 | |
Ni | rs | 0.166 | 0.010 | −0.014 |
p | 0.249 | 0.948 | 0.924 | |
Cu | rs | −0.205 | 0.140 | −0.335 * |
p | 0.152 | 0.331 | 0.017 | |
Se | rs | −0.017 | −0.017 | −0.004 |
p | 0.909 | 0.909 | 0.977 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motas, M.; Jiménez, S.; Oliva, J.; Cámara, M.Á.; Pérez-Cárceles, M.D. Heavy Metals and Trace Elements in Human Breast Milk from Industrial/Mining and Agricultural Zones of Southeastern Spain. Int. J. Environ. Res. Public Health 2021, 18, 9289. https://doi.org/10.3390/ijerph18179289
Motas M, Jiménez S, Oliva J, Cámara MÁ, Pérez-Cárceles MD. Heavy Metals and Trace Elements in Human Breast Milk from Industrial/Mining and Agricultural Zones of Southeastern Spain. International Journal of Environmental Research and Public Health. 2021; 18(17):9289. https://doi.org/10.3390/ijerph18179289
Chicago/Turabian StyleMotas, Miguel, Sandra Jiménez, José Oliva, Miguel Ángel Cámara, and María Dolores Pérez-Cárceles. 2021. "Heavy Metals and Trace Elements in Human Breast Milk from Industrial/Mining and Agricultural Zones of Southeastern Spain" International Journal of Environmental Research and Public Health 18, no. 17: 9289. https://doi.org/10.3390/ijerph18179289
APA StyleMotas, M., Jiménez, S., Oliva, J., Cámara, M. Á., & Pérez-Cárceles, M. D. (2021). Heavy Metals and Trace Elements in Human Breast Milk from Industrial/Mining and Agricultural Zones of Southeastern Spain. International Journal of Environmental Research and Public Health, 18(17), 9289. https://doi.org/10.3390/ijerph18179289