Sugarcane Mosaic Disease: Characteristics, Identification and Control
Abstract
:1. Introduction
2. Characteristics of Mosaic Disease
2.1. Disease Symptoms
2.2. Hosts
2.3. Transmissions
2.4. Epidemiology
3. Pathogenicity Characteristics
3.1. Taxonomic Status
3.2. Morphology, Size, and Viability
3.3. Genome Structure
3.4. Genetic Diversity and Taxonomy
4. Diagnosis/Identification
4.1. Visual Observation
4.2. Biological Identification
4.3. Microscopic Observation
4.4. Serological Detection
4.5. Molecular Detection
5. Prevention and Control Strategy
5.1. Exploitation and Utilization of Resistant Germplasm
5.2. Acceleration of Molecular Breeding
5.3. Application of Virus-Free Plantlets
5.4. Strengthen Cultivation and Control
6. Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arruda, P. Perspective of the Sugarcane Industry in Brazil. Trop. Plant Biol. 2011, 4, 3–8. [Google Scholar] [CrossRef]
- Junior, J.F.; Palacio, J.E.; Leme, R.C.; Lora, E.S.; Eduardo, L.; Reyes, A.M.; Olmo, O.D. Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry. Appl. Energy 2019, 259, 113092. [Google Scholar] [CrossRef]
- Lu, G.; Wang, S.; Lian, Y.; Wei, Y. Development and utilization of sugarcane by-products in the sugar manufacturing process. Sugar Crop. China 2020, 42, 75–80. [Google Scholar]
- Sindhu, R.; Gnansounou, E.; Binod, P.; Pandey, A. Bioconversion of sugarcane crop residue for value added products—An overview. Renew. Energy 2016, 98, 203–215. [Google Scholar] [CrossRef]
- Li, Y.-R. Modern Sugarcane Cultivation; China Agriculture Press: Beijing, China, 2010; pp. 358–359. [Google Scholar]
- Musschenbroek, V.S.C. Beschrijving van twee tot dusverre in west-Java onbekende rietziekten. Soerabaiasche Ver. Suiker Fabr. 1893, 42, 113–118. [Google Scholar]
- Kelly, N.L. BSES cane pest and diseases report. Qld. Agric. J. 1927, 27, 82–83. [Google Scholar]
- Brandes, E.W. The Mosaic Disease of Sugar Cane and Other Grasses; Technical Bulletin No. 829; United States Department of Agriculture: Washington, DC, USA, 1919.
- Dastur, J.F. The mosaic disease of sugarcane in India. Agric. J. India 1923, 18, 505–509. [Google Scholar]
- Brandes, E.W. Artificial and Insect Transmission of Sugar-Cane Mosaic. J. Agric. Res. 1920, 19, 131. [Google Scholar]
- Summers, E.M.; Brandes, E.W.; Rands, R.D. Mosaic of Sugarcane in the United States, with Special Reference to Strains of the Virus; Technical Bulletin No. 955; United States Department of Agriculture: Washington, DC, USA, 1948.
- Koike, H.; Gillaspie, J.R. Mosaic. In Disease of Sugarcane: Major Disease; Ricaud, C., Egan, B.T., Gillaspie, A.G., Hughes, C.G., Eds.; Elsevier Science Publisher: Amsterdam, The Netherland, 1989; pp. 301–322. [Google Scholar]
- Grisham, M.P. Mosaic. In A Guide to Sugarcane Diseases; Rott, P., Bailey, R.A., Comstock, J.C., Croft, B.J., Eds.; CIRAD Publication Services: Montepellier, France, 2011; pp. 249–254. [Google Scholar]
- Wu, L.; Zu, X.; Wang, S.; Chen, Y. Sugarcane mosaic virus—Long history but still a threat to industry. Crop Prot. 2012, 42, 74–78. [Google Scholar] [CrossRef]
- Shukla, D.D.; Frenkel, M.J.; Mckern, N.M.; Ward, C.W.; Jilka, J.; Tosic, M.; Ford, R.E. Present status of the sugarcane mosaic subgroup of potyviruses. In Potyvirus Taxonomy; Springer: New York, NY, USA, 1992; pp. 363–373. [Google Scholar]
- Hall, J.S.; Adams, B.; Parsons, T.J.; French, R.; Lane, L.C.; Jensen, S.G. Molecular Cloning, Sequencing, and Phylogenetic Relationships of a New Potyvirus: Sugarcane Streak Mosaic Virus, and a Reevaluation of the Classification of the Potyviridae. Mol. Phylogenet. Evol. 1998, 10, 323–332. [Google Scholar] [CrossRef]
- Adams, M.J.; Carstens, E.B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2012, 157, 1411–1422. [Google Scholar] [CrossRef] [Green Version]
- Perera, M.F.; Filippone, M.P.; Noguera, A.S.; Cuenya, M.I.; Castagnaro, A.P. An Overview of the Sugarcane Mosaic Disease in South America. Funct. Plant Sci. Biotechnol. 2012, 6, 98–107. [Google Scholar]
- Feng, X.Y.; Shen, L.B.; Zhao, T.T.; Xiong, G.R.; Wang, J.G.; Yang, B.P.; Wang, W.Z.; Feng, C.L.; Zhang, S.Z. Molecular identification of virus diseases in sugarcane in Yunnan. J. South. Agric. 2018, 49, 2198–2203. [Google Scholar]
- Putra, L.K.; Kristini, A.; Achadian, E.M.; Damayanti, T.A. Sugarcane streak mosaic virus in Indonesia: Distribution, Characterisation, Yield Losses and Management Approaches. Sugar Tech 2014, 16, 392–399. [Google Scholar] [CrossRef]
- Michèle, C.; Candy, M.; Jeanclaude, G.; Daniel, G.; Rao, G.P.; Monique, R.; Lockhart, B.; Philippe, R. Mosaic symptoms in sugarcane are caused by Sugarcane streak mosaic virus (SCSMV) in several Asian countries. In Proceedings of the Pathology Workshop of the International Society of Sugar Cane Technologists, Baton Rouge, LA, USA, 11–16 May 2003. [Google Scholar]
- Liang, S.S.; Alabi, O.J.; Damaj, M.B.; Fu, W.L.; Gao, S.J. Genomic variability and molecular evolution of Asian isolates of sugarcane streak mosaic virus. Arch. Virol. 2016, 161, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Sorho, F.; Sereme, D.; Kouamé, K.; Koné, N.; Kone, D.; Yao, K.; Ouattara, M.; Tapsoba, W.; Ouattara, B.; Kone, D. First report of Sugarcane Streak Mosaic Virus (SCSMV) infecting sugarcane in Cote d’Ivoire. Plant Dis. 2021, 105, 519. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, W.F.; Huang, Y.K.; Zhang, R.Y.; Shan, H.L.; Yin, J.; Luo, Z.M. Molecular detection and phylogenetic analysis of viruses causing mosaic symptoms in new sugarcane varieties in China. Eur. J. Plant Pathol. 2017, 148, 931–940. [Google Scholar] [CrossRef]
- Viswanathan, R.; Balamuralikrishnanan, M.; Karuppaiah, R. Sugarcane mosaic complex in India: Cause of different viruses/strains. Indian J. Virol. 2008, 19, 94. [Google Scholar]
- Perera, M.F.; Filippone, M.P.; Ramallo, J.C.; Cuenya, M.I.; Castagnaro, A.P. Diversidad genética del complejo de virosis asociadas a la enfermedad del mosaico de la caña de azúcar en Tucumán, Argentina. Rev. Ind. Agríc. Tucumán 2009, 86, 1–6. [Google Scholar]
- Wang, W.; Ma, Z.; Zhang, S.; Yang, B.; Cai, W.; Gu, L.; Li, J. Research on Genetic Engineering of Sugarcane Mosaic Disease. Biotech. Bull. 2009, 30, 22–26. [Google Scholar]
- Chaves-Bedoya, G.; Espejel, F.; Alcalá-Briseño, R.; Hernández-Vela, J.; Silva-Rosales, L. Short distance movement of genomic negative strands in a host and nonhost for Sugarcane mosaic virus (SCMV). Virol. J. 2011, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokorny, R.; Porubova, M. Movement of Sugarcane mosaic virus in plants of resistant and susceptible maize lines. Cereal Res. Commun. 2006, 34, 1109–11116. [Google Scholar] [CrossRef]
- Bagyalakshmi, K.; Viswanathan, R.; Ravichandran, V. Impact of the viruses associated with mosaic and yellow leaf disease on varietal degeneration in sugarcane. Phytoparasitica 2019, 47, 591–604. [Google Scholar] [CrossRef]
- Irvine, J.E. Photosynthesis in Sugarcane Varieties Infected with Strains of Sugarcane Mosaic Virus. Physiol. Plant. 1971, 24, 51–54. [Google Scholar] [CrossRef]
- Pan, D.R.; Ping, X.L.; Luo, J.; Ying, F.H. Improvement of photosynthetic characteristics and yield of Sugarcane mosaic virus-free chewing cane. J. Fujian Agric. For. Univ. 2001, 30, 320–323. [Google Scholar]
- Singh, V.; Sinha, O.K.; Kumar, R. Progressive decline in yield and quality of sugarcane due to Sugarcane mosaic virus. Indian Phytopathol. 2003, 56, 500–502. [Google Scholar]
- Singh, S.P.; Rao, G.P.; Singh, J.; Singh, S.B. Effect of sugarcane mosaic potyvirus infection on metabolic activity, yield and juice quality. Sugar Cane 1997, 5, 19–23. [Google Scholar]
- He, Y.S.; Li, R.M. Research Status of Sugarcane Mosaic Virus Disease in China. Sugar Crop. China 2006, 28, 47–49. [Google Scholar]
- Viswanathan, R.; Balamuralikrishnan, M. Impact of mosaic infection on growth and yield of sugarcane. Sugar Tech 2005, 7, 61–65. [Google Scholar] [CrossRef]
- Jones, C. Mosaic disease at Isis. BSES Bull 1987, 20, 15–16. [Google Scholar]
- Li, Y.J.; Tang, S.Y.; Huang, Y.Z.; Duan, W.X.; Wang, Z.P.; Luo, T.; Lin, S.H. Occurrence and resistance analysis of sugarcane mosaic in Liuzhou and Laibin regions. China Plant Prot. 2017, 37, 51–55. [Google Scholar]
- Yang, R.Z.; Zhou, H.; Xiao, W.; Lü, D.; Liao, H.X.; Chen, D.D.; Liu, X.H.; Lei, J.C.; Lin, Y.F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crop. China 2020, 42, 47–52. [Google Scholar]
- Kumar, N.R.; Kumar, K.V.K.; Reddy, B.R. Characterization of Sugarcane Mosaic Disease and Its Management with PGPR. In Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture; Sayyed, R.Z., Reddy, M.S., Antonius, S., Eds.; Springer: New Delhi, India, 2019; pp. 145–155. [Google Scholar]
- Deshumkh, G.P.; Sawant, D.M. Studies on Symptomatology of Sorghum and Sugarcane Mosaic Virus. J. Plant Dis. Sci. 2008, 3, 116–117. [Google Scholar]
- Srinivas, K.P.; Reddy, C.V.; Ramesh, B.; Kumar, P.L.; Sreenivasulu, P. Identification of a virus naturally infecting sorghum in India as Sugarcane streak mosaic virus. Eur. J. Plant Pathol. 2010, 127, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Shukla, D.D.; Ward, C.W. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Adv. Virus Res. 1989, 36, 273–314. [Google Scholar]
- Yang, B.P. Modern Sugarcane Cultivation Techniques; China Agriculture Press: Beijing, China, 2019; pp. 358–359. [Google Scholar]
- Rosenkranz, E. New hosts and taxonomic analysis of the mississippi native species tested for reaction to Maize dwarf mosaic and Sugarcane mosaic viruses. Phytopathology 1987, 77, 598–607. [Google Scholar] [CrossRef]
- Harmon, P. Mosaic Disease of St. Augustinegrass Caused by Sugarcane Mosaic Virus. Plant Pathol. 2015, 313–315. [Google Scholar]
- Mollov, D.; Tahir, M.N.; Wei, C.; Kaye, C.; Lockhart, B.; Comstock, J.C.; Rott, P. First Report of Sugarcane mosaic virus Infecting Columbus Grass (Sorghum almum) in the United States. Plant Dis. 2016, 100, 1510. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Yang, Z.; Wang, T.; Liu, Y.; Cheng, G.; Xu, J. First Report of Sugarcane Mosaic Virus on Pumpkin Plants Exhibiting Mosaic and Mottling Symptoms in China. Plant Dis. 2019, 103, 1802. [Google Scholar] [CrossRef]
- Baker, C.A.; Wilber, L.J.; Jones, L. A New Host Diagnosed with a Strain of Sugarcane mosaic virus in Florida: Red-Veined Prayer Plant (Maranta leuconeura erythroneura). Plant Dis. 2010, 94, 378–379. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Xu, X.H.; Sun, H.W.; Li, F.; Gao, R.; Yang, S.K.; Li, X.D. First Report of Sugarcane mosaic virus Infecting Canna spp. in China. Plant Dis. 2016, 100, 2541. [Google Scholar] [CrossRef]
- Grisham, M.P.; Maroon-Lango, C.J.; Hale, A.L. First Report of Sorghum mosaic virus Causing Mosaic in Miscanthus sinensis. Plant Dis. 2012, 96, 150. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.L.; Sun, S.R.; Fu, H.Y.; Chen, R.K.; Su, J.W.; Gao, S.J. A One-Step Real-Time RT-PCR Assay for the Detection and Quantitation of Sugarcane Streak Mosaic Virus. BioMed Res. Int. 2015, 2015, 569131. [Google Scholar] [CrossRef] [Green Version]
- Hema, M.; Savithri, H.S.; Sreenivasulu, P. Sugarcane streak mosaic virus: Occurrence, purification, characterization and detection. In Sugarcane Pathology. Virus and Phytoplasma Diseases; Rao, G.P., Ford, R.E., Tosic, M., Teakle, D.S., Eds.; Science Publishers: Enfield, NE, USA, 2001; Volume 2, pp. 37–70. [Google Scholar]
- Singh, D.; Rao, G.P. Sudan grass (Sorghum sudanense Stapf): A new sugarcane streak mosaic virus mechanical host. J. Guangxi Agric. Sci. 2010, 41, 436–438. [Google Scholar]
- Koike, H.; Gillaspie, J.A.G. Strain M, a new strain of sugarcane mosaic. Plant Dis. Rep. 1976, 60, 50–54. [Google Scholar]
- Kennedy, J.S.; Day, M.F.; Eastop, V.F. A Conspectus of Aphids as Vectors of Plant Viruses; Commonwealth Institute of Entomology: London, UK, 1962. [Google Scholar]
- Kondaiah, E.; Nayudu, M.V. Sugarcane mosaic virus strain H-a new record from India. Curr. Sci. India 1984, 53, 273–275. [Google Scholar]
- Singh, M.; Singh, A.; Upadhyaya, P.P.; Rao, G.P. Transmission studies on an Indian isolate of sugarcane mosaic potyvirus. Sugar Tech 2005, 7, 32–38. [Google Scholar] [CrossRef]
- Klein, P.; Smith, C.M. Host plant selection and virus transmission by Rhopalosiphum maidis are conditioned by potyvirus infection in Sorghum bicolor. Arthropod-Plant Interact. 2020, 14, 811–823. [Google Scholar] [CrossRef]
- Saladini, J.L.; Zettler, F.W. Resistance of St. Augustine grass to infection by sugarcane mosaic virus. Phytopathology 1973, 63, 162–166. [Google Scholar] [CrossRef]
- Brunt, A.A.; Crabtree, K.; Dallwitz, M.J.; Gibbs, A.J.; Watson, L.; Zurcher, E.J. (Eds.) Viruses of Plants. Descriptions and Lists from the VIDE Database; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Lockhart, B.E.L.; Autrey, L.J.C. Mild mosaic. In A Guide to Sugarcane Diseases; Rott, P., Bailey, R.A., Comstock, J.C., Croft, B.J., Eds.; La Librairie du Cirad: Montpellier, France, 2000; pp. 245–248. [Google Scholar]
- Raza, A.; Farooq, T. Sugarcane mosaic virus in sugarcane. In Pest Management Decision Guides; CABI Publishers: Wallingford, UK, 2017; p. 1. [Google Scholar]
- He, Z. Molecular Evolution of Sugarcane Streak Mosaic and Sorghum mosaic virus. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2014. [Google Scholar]
- Huang, Y.K.; Li, W.F. Colored Atlas of Control on Diseases, Insect Pests and Weeds of Modern Sugarcane; China Agriculture Press: Beijing, China, 2016; pp. 118–122. [Google Scholar]
- Seifers, D.L.; Martin, T.J.; Harvey, T.L.; Fellers, J.P.; Michaud, J.P. Identification of the Wheat Curl Mite as the Vector of Triticum mosaic virus. Plant Dis. 2009, 93, 25–29. [Google Scholar] [CrossRef]
- Brandes, E.W.; Sartoris, G.B.; Grassl, C.O. Assembling and evaluating wild forms of sugarcane and closely related plants. Proc. Int. Soc. Sugar Cane Technol. 1939, 6, 128–153. [Google Scholar]
- Silva, M.F.; Goncalves, M.C.; Melloni, M.; Perecin, D.; Landell, M.; Xavier, M.A.; Pinto, L.R. Screening Sugarcane Wild Accessions for Resistance to Sugarcane Mosaic Virus (SCMV). Sugar Tech 2015, 17, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Kuniata, L.S.; Magarey, R.C.; Rauka, G.; Price, T.V. Conservation of sugarcane germplasm: Survey of Papua New Guinea, Indonesia and northern Australia. Aciar Techn. Rep. 2006, 62, 36–42. [Google Scholar]
- Bagyalakshmi, K.; Viswanathan, R. Development of a Scoring System for Sugarcane Mosaic Disease and Genotyping of Sugarcane Germplasm for Mosaic Viruses. Sugar Tech 2021, 23, 1105–1117. [Google Scholar] [CrossRef]
- Putra, L.K.; Ogle, H.J.; James, A.P.; Whittle, P. Distribution of Sugarcane mosaic virus in sugarcane plants. Australas. Plant Pathol. 2003, 32, 305–307. [Google Scholar] [CrossRef]
- IPP; CAAS; CSPP. Crop Diseases and Insects in China, 3rd ed.; China Agriculture Press: Beijing, China, 2015; Volume 3, pp. 800–801. [Google Scholar]
- Adams, M.J.; Zerbini, F.M.; French, R.; Rabenstein, F.; Strenger, D.C.; Valkonen, J. Family Potyviridae. In Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses; Oxford University Press: London, UK, 2012; pp. 1069–1089. [Google Scholar]
- Hema, M.; Joseph, J.; Gopinath, K.; Sreenivasulu, P.; Savithri, H.S. Molecular characterization and interviral relationships of a flexuous filamentous virus causing mosaic disease of sugarcane (Saccharum officinarum L.) in India. Arch. Virol. 1999, 144, 479–490. [Google Scholar] [CrossRef]
- Verma, R.K.; Mishra, R.; Sharma, P.; Gaur, R.K. Systemic infection of Potyvirus: A compatible interaction between host and viral proteins. In Approaches to Plant Stress and Their Management; Springer: New Delhi, India, 2014; pp. 353–363. [Google Scholar]
- Xu, D.L.; Zhou, G.H.; Xie, Y.J.; Mock, R.; Li, R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes 2010, 40, 432–439. [Google Scholar] [CrossRef]
- Chung, Y.W.; Miller, W.A.; Atkins, J.F.; Firth, A.E. An overlapping essential gene in the Potyviridae. Proc. Natl. Acad. Sci. USA 2008, 105, 5897–5902. [Google Scholar] [CrossRef] [Green Version]
- Chandran, V.; Gajjeraman, P. Molecular Diversity Analysis of Pretty Interesting Potyviridae ORF (PIPO) Coding Region in Indian Isolates of Sugarcane streak mosaic virus. Sugar Tech 2016, 18, 214–221. [Google Scholar] [CrossRef]
- Parameswari, B.; Bagyalakshmi, K.; Chinnaraja, C.; Viswanathan, R. Molecular characterization of Indian Sugarcane streak mosaic virus isolates reveals recombination and negative selection in the P1 gene. Gene 2014, 552, 199–203. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, C.; Hong, J.; Xiong, R.; Kasschau, K.D.; Zhou, X.; Carrington, J.C.; Wang, A. Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathog. 2010, 6, e1000962. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Li, W.; Yasaka, R.; Huang, Y.; Li, S. Molecular variability of sugarcane streak mosaic virus in China based on an analysis of the P1 and CP protein coding regions. Arch. Virol. 2014, 159, 1149–1154. [Google Scholar] [CrossRef]
- López-Moya, J.; Pirone, T.P.; Wang, R.Y. Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. J. Gen. Virol. 1999, 80, 3281–3288. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Luo, Q.; Chen, R.; Gao, S. Advances in researches on molecular biology of viruses causing sugarcane mosaic. J. Plant Prot. 2017, 44, 363–370. [Google Scholar]
- Anandalakshmi, R.; Pruss, G.J.; Ge, X.; Marathe, R.; Mallory, A.C.; Smith, T.H.; Vance, V.B. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 1998, 95, 13079–13084. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Peng, D.; Lu, L.; Qi, X.; Wang, W.; Cao, X.; Bo, R.; Wei, C.; Yi, L. Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovirus on the accumulation of siRNAs. Virology 2008, 374, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Pruss, G.; Xin, G.; Xing, M.S.; Vance, C. Plant Viral Synergism: The Potyviral Genome Encodes a Broad-Range Pathogenicity Enhancer That Transactivates Replication of Heterologous Viruses. Plant Cell 1997, 9, 859–868. [Google Scholar] [CrossRef]
- Tatineni, S.; Qu, F.; Li, R.; Morris, T.J.; French, R. Triticum mosaic poacevirus enlists P1 rather than HC-Pro to suppress RNA silencing-mediated host defense. Virology 2012, 433, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Valli, A.; Lopez-Moya, J.J.; Garcia, J.A. Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J. Gen. Virol. 2007, 88, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- Kasschau, K.D.; Carrington, J.C. Long-Distance Movement and Replication Maintenance Functions Correlate with Silencing Suppression Activity of Potyviral HC-Pro. Virology 2001, 285, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Atreya, C.D.; Atreya, P.L.; Thornbury, D.W.; Pirone, T.P. Site-directed mutations in the potyvirus HC-Pro gene affect helper component activity, virus accumulation, and symptom expression in infected tobacco plants. Virology 1992, 191, 106–111. [Google Scholar] [CrossRef]
- Eiamtanasate, S.; Juricek, M.; Yap, Y.K. C-terminal hydrophobic region leads PRSV P3 protein to endoplasmic reticulum. Virus Genes 2007, 35, 611–617. [Google Scholar] [CrossRef]
- Suehiro, N. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J. Gen. Virol. 2004, 85, 2087–2098. [Google Scholar] [CrossRef]
- Hong, X.Y.; Chen, J.; Shi, Y.H.; Chen, J.P. The ‘6K1’ protein of a strain of Soybean mosaic virus localizes to the cell periphery. Arch. Virol. 2007, 152, 1547–1551. [Google Scholar] [CrossRef]
- Cui, H.; Wang, A. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection. J. Virol. 2016, 90, 5119–5131. [Google Scholar] [CrossRef] [Green Version]
- Sorel, M.; Garcia, J.A.; German-Retana, S. The Potyviridae Cylindrical Inclusion Helicase: A Key Multipartner and Multifunctional Protein. Mol Plant Microbe Interact. 2014, 27, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Romain, G.; Jiang, J.; Wan, J.; Maxime, A.; Zheng, H.; Jean-Francois, L. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Front. Microbiol. 2013, 4, 351. [Google Scholar]
- Spetz, C.; Valkonen, J. Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Mol. Plant Microbe Interact. 2004, 17, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Patarroyo, C.; Cabanillas, D.G.; Zheng, H.; Laliberté, J. The Vesicle-Forming 6K2 Protein of Turnip Mosaic Virus Interacts with the COPII Coatomer Sec24a for Viral Systemic Infection. J. Virol. 2015, 89, 6695–6710. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Chen, Y.; Ding, X.; Webb, S.; Zhou, T.; Nelson, R.S.; Fan, Z. Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection. New Phytol. 2014, 203, 1291–1304. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.Y. Functional Characterization of Potyvirus-Encoded Membrane-Associated Proteins. Ph.D. Thesis, Northwest Agricuture and Forest Science and Technology University, Yangling, China, 2010. [Google Scholar]
- Gao, L. The Screening and Functional Exploration of the Interactive Host Factors in Papaya to Papaya Ringspot Virus NIa-Pro. Ph.D. Thesis, Hainan University, Haikou, China, 2012. [Google Scholar]
- Anindya, R.; Savithri, H.S. Potyviral NIa Proteinase, a Proteinase with Novel Deoxyribonuclease Activity. J. Biol. Chem. 2004, 279, 32159–32169. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Zheng, J.; Yan, P.; Decai, T.; Li, X.; Shen, W.; Zhou, P. Prokaryotic Expression and Biological Activity of NIa-Pro Protein from Papaya Ringspot Virus. Chin. J. Trop. Crop. 2016, 37, 722–727. [Google Scholar]
- Liu, F.; Sukhacheva, E.; Erokhina, T.; Schubert, J. Detection of Potyviral Nuclear Inclusion b Proteins by Monoclonal Antibodies Raised to Synthetic Peptides. Eur. J. Plant Pathol. 1999, 105, 389–395. [Google Scholar] [CrossRef]
- Jebasingh, T.; Jacob, T.; Shah, M.; Das, D.; Usha, R. Optimized expression, solubilization and purification of nuclear inclusion protein b of Cardamom mosaic virus. Indian J. Biochem. Biophys. 2008, 45, 98–105. [Google Scholar]
- Summers, E.M. An Investigation of Types or Strains of the Mosaic Virus of Sugarcane in Louisiana; Iowa State University: Ames, IA, USA, 1935. [Google Scholar]
- Summers, E.M. A study of the common mosaic of sugarcane with special reference to strain of the virus. Int. Soc. Sugar Cane Technol. 1939, 6, 564–565. [Google Scholar]
- Tippett, R.L.; Abbott, E.V. A new strain of sugarcane mosaic virus in Louisiana. Plant Dis. Rep. 1968, 52, 449–451. [Google Scholar]
- Che, J.; Zheng, H.Y.; Chen, J.P.; Adams, M.J. Characterisation of a potyvirus and a potexvirus from Chinese scallion. Arch. Virol. 2002, 147, 683–693. [Google Scholar]
- Luo, Q.; Ahmad, K.; Fu, H.Y.; Wang, J.; Chen, R.K.; Gao, S.J. Genetic diversity and population structure of Sorghum mosaic virus infecting Saccharum spp. hybrids. Ann. Appl. Biol. 2016, 169, 398–407. [Google Scholar] [CrossRef]
- Alegria, O.M.; Royer, M.; Bousalem, M.; Chatenet, M.; Peterschmitt, M.; Girard, J.C.; Rott, P. Genetic diversity in the coat protein coding region of eighty-six sugarcane mosaic virus isolates from eight countries, particularly from Cameroon and Congo. Arch. Virol. 2003, 148, 357–372. [Google Scholar] [CrossRef]
- Gaur, R. Antigenic and biological diversity among sugarcane mosaic isolates from different geographical regions in India. Indian J. Biotechnol. 2004, 108, 538–554. [Google Scholar]
- Viswanathan, R.; Balamuralikrishnan, M.; Karuppaiah, R. Characterization and genetic diversity of sugarcane streak mosaic virus causing mosaic in sugarcane. Virus Genes 2008, 36, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Espejel, F.; Jeffers, D.; Noa-Carrazana, J.C.; Ruiz-Castro, S.; Silva-Rosales, L. Coat protein gene sequence of a Mexican isolate of Sugarcane mosaic virus and its infectivity in maize and sugarcane plants. Arch. Virol. 2006, 151, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.F.; Filippone, M.P.; Ramallo, C.J.; Cuenya, M.I.; Castagnaro, A.P. Genetic Diversity Among Viruses Associated with Sugarcane Mosaic Disease in Tucumán, Argentina. Phytopathology 2009, 99, 38–49. [Google Scholar] [CrossRef]
- Gemechu, A.L.; Chiemsombat, P.; Attathom, S.; Reanwarakorn, K.; Lersrutaiyotin, R. Cloning and sequence analysis of coat protein gene for characterization of sugarcane mosaic virus isolated from sugarcane and maize in Thailand. Arch. Virol. 2006, 151, 167–172. [Google Scholar] [CrossRef]
- Paweena, K.; Pissawan, C.; Ratchanee, H. Characterization and Genetic Variation of Sugarcane Streak Mosaic Virus, a Poacevirus Infecting Sugarcane in Thailand. Mod. Appl. Sci. 2016, 10, 137–149. [Google Scholar]
- Hincapie, M.; Sood, S.; Mollov, D.; Odero, C.; Rott, P. Eight species of Poaceae are hosting different genetic and pathogenic strains of Sugarcane mosaic virus in the Everglades Agricultural Area. Phytopathology 2021. [Google Scholar] [CrossRef]
- Bagyalakshmi, K.; Parameswari, B.; Chinnaraja, C.; Karuppaiah, R.; Ganesh, V. Genetic variability and potential recombination events in the HC-Pro gene of sugarcane streak mosaic virus. Arch. Virol. 2012, 157, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Aranda, M.A.; Fraile, A.; Dopazo, J.; Malpica, J.M.; García-Arenal, F. Contribution of Mutation and RNA Recombination to the Evolution of a Plant Pathogenic RNA. J. Mol. Evol. 1997, 44, 81–88. [Google Scholar] [CrossRef]
- Roossinck, M.J. Mechanisms of plant virus evolution. Annu. Rev. Rhytopathol. 1997, 35, 191. [Google Scholar] [CrossRef] [PubMed]
- Gyöngyvér, G.; Sebestyén, E.; Balázs, E. Recombination analysis of Maize dwarf mosaic virus (MDMV) in the Sugarcane mosaic virus (SCMV) subgroup of potyviruses. Virus Genes 2015, 50, 79–86. [Google Scholar]
- Bagyalakshmi, K.; Parameswari, B.; Viswanathan, R. Phylogenetic analysis and signature of recombination hotspots in sugarcane mosaic virus infecting sugarcane in India. Phytoparasitica 2019, 47, 275–291. [Google Scholar] [CrossRef]
- Zhen, H.; Dong, Z.; Gan, H. Genetic changes and host adaptability in sugarcane mosaic virus based on complete genome sequences. Mol. Phylogenet. Evol. 2020, 149, 106848. [Google Scholar]
- Lavín-Castaeda, J.; Sentíes-Herrera, H.; Trejo-Téllez, L.; Bello-Bello, J.J.; Gómez-Merino, F. Advances in the selection program of sugarcane (Saccharum spp.) varieties in the Colegio de Postgraduados. AGRO Productividad 2020, 13, 123–130. [Google Scholar]
- Rice, J.L.; Hoy, J.W.; Grisham, M.P. Sugarcane Mosaic Distribution, Incidence, Increase, and Spatial Pattern in Louisiana. Plant Dis. 2019, 103, 2051–2056. [Google Scholar] [CrossRef]
- Abbott, E.V.; Tippett, R.L. Strains of Sugarcane Mosaic Virus. USDA Techn. Bull. 1966, 1340, 25. [Google Scholar]
- Edwardson, J.R. Nclusion bodies. Arch. Virol. 1992, 5, 25–30. [Google Scholar]
- Wang, W.B.; Hong, J.; Zhou, X.P. Comparative studies on ultrastructural alteration of maize infected with Sorghum mosaic virus (SrMV) and Sugarcane mosaic virus (SCMV). J. Zhejiang Univ. 2004, 30, 215–220. [Google Scholar]
- Balamuralikrishnan, M.; Doraisamy, S.; Ganapathy, T.; Viswanathan, R. Note: Comparison of antibody- and genome-based diagnostic techniques for Sugarcane mosaic virus in sugarcane. Phytoparasitica 2004, 32, 52–56. [Google Scholar] [CrossRef]
- Thorat, A.S.; Pal, R.K.; Shingote, P.R.; Kharte, S.B.; Nalavade, V.M.; Dhumale, D.R.; Pawar, B.H.; Bahu, K.H. Detection of Sugarcane Mosaic Virus in Diseased Sugarcane using ELISA and RT-PCR Technique. J. Pure. Appl. Microbiol. 2015, 9, 319–327. [Google Scholar]
- Mohammadi, M.R.; Koohi-Habibi, M.; Mosahebi, G.; Hajieghrari, B. Identification of prevalent potyvirus on maize and johnsongrass in corn fields of Tehran province of Iran and a study on some of its properties. Comm. Appl. Biol. Sci. 2006, 71, 1311–1319. [Google Scholar]
- Gaur, R.K.; Singh, M.; Singh, A.P.; Singh, A.K.; Rao, G.P. Screening of sugarcane mosaic potyvirus (SCMV) from cane stalk juice. Sugar Tech 2002, 4, 169–171. [Google Scholar] [CrossRef]
- Wang, F.; Liao, Y.; Li, S.; Lin, Y.; Huang, Z.; Yuan, J.; Chen, B.; Wen, R. Establishment and Application of Indirect-ELISA for Detection of Sorghum mosaic virus in Sugarcane. Genom. Appl. Biol. 2017, 36, 4206–4211. [Google Scholar]
- Yang, Z.N.; Mirkov, T.E. Sequence and Relationships of Sugarcane Mosaic and Sorghum Mosaic Virus Strains and Development of RT-PCR-Based RFLPs for Strain Discrimination. Phytopathology 1997, 87, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, M.; Xu, D.; Li, R.; Zhou, G. Simultaneous detection and identification of four sugarcane viruses by one-step RT-PCR. J. Virol. Methods 2009, 162, 64–68. [Google Scholar] [CrossRef]
- Smith, G.R.; Velde, R. Detection of sugarcane mosaic virus and Fiji disease virus in diseased sugarcane using the polymerase chain reaction. Plant Dis. 1994, 78, 557–561. [Google Scholar] [CrossRef]
- Hema, M.; Savithri, H.S.; Sreenivasulu, P. Comparison of direct binding polymerase chain reaction with recombinant coat protein antibody based dot-blot immunobinding assay and immunocapture-reverse transcription-polymerase chain reaction for the detection of Sugarcane streak mosaic virus causing mosaic disease of sugarcane in India. Curr. Sci. India 2003, 85, 1774–1777. [Google Scholar]
- Chen, H.; Ali, N.; Lv, W.; Shen, Y.; Qing, Z.; Lin, Y.; Chen, B.; Wen, R. Comparison of IC-RT-PCR, Dot-ELISA and Indirect-ELISA for the Detection of Sorghum Mosaic Virus in Field-Grown Sugarcane Plants. Sugar Tech 2020, 22, 122–129. [Google Scholar] [CrossRef]
- Subba-Reddy, C.V.; Sreenivasulu, P.; Sekhar, G. Duplex-immunocapture-RT-PCR for detection and discrimination of two distinct potyviruses naturally infecting sugarcane (Saccharum spp. hybrid). Indian J. Exp. Biol. 2011, 49, 68–73. [Google Scholar]
- Keizerweerd, A.T.; Chandra, A.; Grisham, M.P. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane. J. Virol. Methods 2015, 212, 23–29. [Google Scholar] [CrossRef] [Green Version]
- D’Hont, A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet. Genome Res. 2005, 109, 27–33. [Google Scholar] [CrossRef]
- Heinz, D.J. Sugarcane Improvement Through Breeding; Elsevier Science Publishers: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Grisham, M.P.; Burner, D.M.; Legendre, B.L. Resistance to the H Strain of Sugarcane Mosaic Virus Among Wild Forms of Sugarcane and Relatives. Plant Dis. 1992, 76, 360–362. [Google Scholar] [CrossRef]
- Da-Silva, M.F.; Goncalves, M.C.; Pinto, L.R.; Perecin, D.; Xavier, M.A.; Landell, M.G. Evaluation of Brazilian sugarcane genotypes for resistance to Sugarcane mosaic virus under greenhouse and field conditions. Crop Prot. 2015, 70, 15–20. [Google Scholar] [CrossRef]
- De-Souza, I.; Macêdo, G.; Barbosa, M.; Barros, B.; Gonalves, I. Reaction of sugarcane genotypes to strains of the Sugarcane mosaic virus. Int. J. Curr. Res. 2017, 9, 59112–59119. [Google Scholar]
- Li, W.F.; Shan, H.L.; Zhang, R.Y.; Wang, X.Y.; Luo, Z.M.; Yin, J.; Cui, X.Y.; Li, Y.J.; Huang, Y.K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol. Sinca 2018, 48, 389–394. [Google Scholar]
- Dean, J.L. A spray method for inoculating sugar-cane seedlings with the mosaic virus. Plant Dis. Rep. 1960, 44, 874–876. [Google Scholar]
- Giorda, L.M.; Toler, R.W. Effect of single and mixed infection of maize dwarf mosaic virus strain A, sugarcane mosaic virus strain H and an isolate of sugarcane mosaic virus strain H on 27 accessions of grain sorghum. Sorghum Newsl. 1985, 28, 103–105. [Google Scholar]
- Gan, D.; Zhang, J.; Jiang, H.; Jiang, T.; Zhu, S.; Cheng, B. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep. 2010, 29, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Srisink, S.; Taylor, P.; Stringer, J.; Teakle, D. An abrasive pad rubbing method for inoculating sugarcane with sugarcane mosaic virus. Aus. J. Agric. Res. 1994, 45, 625–631. [Google Scholar] [CrossRef]
- Zhou, F.J. Molecular Detection and Physiological and Biochemical Changes of Sugarcane Mosaic Disease. Master’s Thesis, Guangxi University, Nanjing, China, 2015. [Google Scholar]
- Li, W.; Huang, Y.; Lu, W.; Luo, Z. Studies on a new method of inoculation for identification of resistance to sugarcane mosaic disease. Plant Prot. 2008, 34, 127–130. [Google Scholar]
- Zhang, J.; Zhang, X.; Tang, H.; Zhang, Q.; Hua, X.; Ma, X.; Zhu, F.; Jones, T.; Zhu, X.; Bowers, J.; et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 2018, 50, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Garsmeur, O.; Droc, G.; Antonise, R.; Grimwood, J.; Potier, B.; Aitken, K.; Jenkins, J.; Martin, G.; Charron, C.; Hervouet, C.; et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat. Commun. 2018, 9, 2638. [Google Scholar] [CrossRef] [PubMed]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Melchinger, A.E.; Kuntze, L.; Lübberstedt, T. Quantitative Trait Loci Mapping of Resistance to Sugarcane Mosaic Virus in Maize. Phytopathology 1999, 89, 660–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.L.; Melchinger, A.E.; Xia, X.C.; Lübberstedt, T. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol. Gen. Genet. 1999, 261, 574–581. [Google Scholar] [CrossRef]
- Duble, C.M.; Melchinger, A.E.; Kuntze, L.; Stork, A.; Lubberstedt, T. Molecular mapping and gene action of Scm1 and Scm2, two major QTL contributing to SCMV resistance in maize. Plant Breed. 2010, 119, 299–303. [Google Scholar]
- Zhang, S.H.; Li, X.H.; Wang, Z.H.; George, M.L.; Jeffers, D.; Wang, X.D.; Liu, X.D.; Li, M.S.; Yuan, L.X. QTL mapping for resistance to SCMV in Chinese maize germplasm. Maydica 2003, 48, 307–312. [Google Scholar]
- De-Souza, I.; Schuelter, A.R.; Guimarães, C.; Schuster, I.; Oliveira, E.D.; Redinbaugh, M. Mapping QTL contributing to SCMV resistance in tropical maize. Hereditas 2010, 145, 167–173. [Google Scholar] [CrossRef]
- Liu, X.H.; Tan, Z.B.; Rong, T.Z. Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 2009, 167, 229–235. [Google Scholar] [CrossRef]
- Ding, J.; Li, H.; Wang, Y.; Zhao, R.; Zhang, X.; Chen, J.; Xia, Z.; Wu, J. Fine mapping of Rscmv2, a major gene for resistance to sugarcane mosaic virus in maize. Mol. Breed. 2012, 30, 1593–1600. [Google Scholar] [CrossRef]
- Soldanova, M.; Cholastova, T.; Polakova, M.; Piakova, Z.; Hajkova, P. Molecular mapping of quantitative trait loci (QTLs) determining resistance to Sugarcane mosaic virus in maize using simple sequence repeat (SSR) markers. Afr. J. Biotechnol. 2012, 11, 3496–3501. [Google Scholar]
- Xu, L.P.; Pan, D.R.; Chen, R.K. Genetic Engineering Sugarcane: Potential, Current Status and Prospects. Chin. J. Biotechnol. 2001, 17, 371–374. [Google Scholar]
- Abel, P.P.; Nelson, R.; De, B.; Hoffmann, N.; Beachy, R.N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 1986, 232, 738–743. [Google Scholar] [CrossRef]
- Smith, G.R.; Gambley, R.L.; Egan, B.T. Progress in development of a sugarcane meristem transformation system and production of SCMV-resistant transgenics. Proc. Aust. Soc. Sugar Cane Technol. 1994, 15, 237–243. [Google Scholar]
- Joyce, P.A.; Mcqualter, R.B.; Handley, J.A.; Dale, J.L.; Harding, R.M.; Smith, G.R. Transgenic sugarcane resistant to sugarcane mosaic virus. Proc. Aust. Soc. Sugar Cane Technol. 1998, 20, 204–210. [Google Scholar]
- Ingelbrecht, I.L.; Irvine, J.E.; Mirkov, T.E. Posttranscriptional Gene Silencing in Transgenic Sugarcane. Dissection of Homology-Dependent Virus Resistance in a Monocot That Has a Complex Polyploid Genome. Plant Physiol. 1999, 119, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sooknandan, S.; Snyman, S.J.; Potier, B.A.M.; Huckett, B. Progress in the Development of Mosaic Resistant Sugarcane via Transgenesis; South African Sugar Association Experiment Station: Mount Edgecombe, South Africa, 2003; Volume 77, pp. 624–627. [Google Scholar]
- Guo, Y.; Ruan, M.H.; Yao, W.; Chen, L.; Chen, R.K.; Zhang, M.Q. Difference of coat protein mediated resistance to sugarcane mosaic virus between Badila and Funong 91–4621. J. Fujian Agric. For. Univ. 2008, 37, 7–12. [Google Scholar]
- Xu, J.S.; Cheng, G.Y.; Xu, Q.; Tong, M.; Peng, L.; Yang, Y.Q.; Deng, Y.Q.; Gao, S.W.; Guo, J.L.; Xu, L.P. A Method for Breeding Transgenic Sugarcane Resistant to Mosaic Disease by Blocking Intercellular Migration of Virus with RNAi. Patent CN105821051A, 3 August 2016. [Google Scholar]
- Xu, J.S.; Yang, Y.Q.; Cheng, G.Y.; Gao, S.W.; Guo, J.L.; Zhai, Y.S.; Peng, L.; Deng, Y.Q.; Zheng, Y.R.; Xu, L.P. A Method for Breeding Sugarcane Resistant to Stripe Mosaic Disease by Silencing ScelF4E1 Gene with RNAi. Patent CN105039356A, 11 November 2015. [Google Scholar]
- Aslam, U.; Tabassum, B.; Nasir, I.A.; Khan, A.; Husnain, T. A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane. Transgenic Res. 2018, 27, 203–210. [Google Scholar] [CrossRef]
- Widyaningrum, S.; Pujiasih, D.R.; Sholeha, W.; Harmoko, R.; Sugiharto, B. Induction of resistance to sugarcane mosaic virus by RNA interference targeting coat protein gene silencing in transgenic sugarcane. Mol. Biol. Rep. 2021, 48, 3047–3054. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Guo, Y.; Zheng, B.; Yuan, M.; Shi, X.; Chen, R. Evaluation on Yield and Sugar Characteristics in Transgenic Sugarcane Mediated with SrMV-P1 Gene from Sugarcane Mosaic Virus. Chin. J. Trop. Crop. 2012, 33, 843–847. [Google Scholar]
- Gilbert, R.A.; Gallo-Meagher, M.; Comstock, J.C.; Miller, J.D.; Jain, M.; Abouzid, A. Agronomic Evaluation of Sugarcane Lines Transformed for Resistance to Sugarcane Mosaic Virus Strain E. Crop Sci. 2005, 45, 2060–2067. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Ruan, M.; Qin, L.; Yang, C.; Chen, R.; Chen, B.; Zhang, M. Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus. Front. Plant Sci. 2017, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Li, W.Y.; Huang, Y.K.; Lu, W.H.; Luo, Z.M. Research Progress on Sugarcane Mosaic Disease. Sugar Crop. China 2009, 31, 61–64. [Google Scholar]
- Viswanathan, R.; Malathi, P.; Neelamathi, D. Enhancing sugarcane yield per hectare through improved virus-free seed nursery programme. Icar News 2018, 24, 4–5. [Google Scholar]
- González-Arnao, M.; Banasiak, M.; Snyman, S.J. The Potential of Cryotherapy to Remove Sugarcane Mosaic Virus from Sugarcane (Saccharum spp. Hybrids) Shoot Tips. Cryoletters 2020, 41, 267–271. [Google Scholar] [PubMed]
- Barboza, A.; Júnior, H.; Souto, E.R.; Silva, C.M.; Marcuz, F.S.; Vieira, R.A. Detection of Sugarcane mosaic virus in Paraná state and virus elimination by tissue culture. Fitopatol. Bras. 2007, 32, 345–348. [Google Scholar] [CrossRef]
- Damayanti, T.A.; Putra, L.K. Hot water treatment of cutting-cane infected with sugarcane streak mosaic virus (SCSMV). J. ISSAAS 2010, 16, 17–25. [Google Scholar]
- Subba, R.; Sreenivasulu, P. Generation of Sugarcane streak mosaic virus-free sugarcane (Saccharum spp. hybrid) from infected plants by in vitro meristem tip culture. Eur. J. Plant Pathol. 2011, 130, 597–604. [Google Scholar]
- Suman, M.; Deepti, S.; Tiwari, A.; Lal, M.; Rao, G.P. Elimination of Sugarcane mosaic virus and Sugarcane streak mosaic virus by tissue culture. Int. Sugar J. 2010, 28, 119–122. [Google Scholar]
- Gonalves, M.C.; Pinto, L.R.; Souza, S.C.; Landell, M.G.A. Virus diseases of sugarcane A constant challenge to sugarcane breeding in Brazil. Funct. Plant Sci. Biotechnol. 2012, 6, 108–116. [Google Scholar]
- Xu, L.P.; Qu, Y.X.; Fang, X.D.; Zhou, Z.Y.; Zhang, S.Z.; Su, Y.C.; Chen, C.B.; Gao, S.W.; Yang, B.P.; Guo, J.L.; et al. Technical Specification for the Certification of Sugarcane Pathogen-Free Planting Stock; Standard NY/T 3179-2018; Ministry of Agriculture: Beijing, China, 2018.
- Nadif, A.; Madrance, A.; Hesse, W.F. Control of sugarcane mosaic virus in Morocco. In Proceedings of the XXI ISSCT Congress, Bangkok, Thailand, 5–14 March 1992. [Google Scholar]
- Pang, Z.; Tayyab, M.; Islam, W.; Tarin, M.; Sarfaraz, R.; Naveed, H.; Zaman, S.; Zhang, B.; Yuan, Z.; Zhang, H. Silicon-mediated improvement in tolerance of economically important crops under drought stress. Appl. Ecol. Environ. Res. 2019, 17, 6151–6170. [Google Scholar] [CrossRef]
- Pang, Z.; Tayyab, M.; Kong, C.; Hu, C.; Zhu, Z.; Wei, X.; Yuan, Z. Liming Positively Modulates Microbial Community Composition and Function of Sugarcane Fields. Agronomy 2019, 9, 808. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Dong, F.; Liu, Q.; Lin, W.; Hu, C.; Yuan, Z. Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community. Front. Microbiol. 2021, 12, 369. [Google Scholar] [CrossRef] [PubMed]
Virus Species | Virion Size | Inactivation Temperature | Survival Time | Dilution Limit | Standard Sedimentation Constant and Buoyancy Density | References |
---|---|---|---|---|---|---|
SCMV | 630–770 nm × 13–15 nm | 53–57 ℃ | in vitro survival time is 17–24 h at 27 °C and 27 d at −6 °C | 10−3−10−5 | 160–175 S, 1.285–1.342 g/mL | [45] |
SrMV | 620 nm × 15 nm | 53–55 ℃ | in vitro survival time is 1–2 d at 20 °C | 10−2–10−3 | - | [13] |
SCSMV | 890 nm × 15 nm | 55–60 ℃ | in vitro survival time is 1–2 d and 8–9 d at room temperature and 4 ℃ | 10−4–10−5 | - | [53,74] |
Protein Name | Role | References |
---|---|---|
P1 |
| [88] [87] |
HC-Pro |
| [89] [90] [86] |
P3 |
| [91] [92] |
PIPO |
| [77] |
P3N-PIPO |
| [80] |
6K1 |
| [93] [94] |
CI |
| [95] |
6K2 |
| [96] [97] [98] |
VPg |
| [99] [100] |
NIa-Pro |
| [101] [102] [103] |
NIb-Pro |
| [104] [105] |
CP |
| [73] |
Technology Name | Detection Virus | Primer Sequence (5′→3′) | Sequence Position | Amplification Size (bp) | Annealing/ Incubated Temperature (°C) | Reference |
---|---|---|---|---|---|---|
RT-PCR | SCMV | F: TTTYCACCAAGCTGGAA R: AGCTGTGTGTCTCTCTGTATTCTC | NIb-CP | 873(-A), 885(-B/-D), 897(-E) | 60 | [135] |
SrMV | F: AAGCAACAGCACAAGCAC R: TGACTCTCACCGACATTCC | NIb-CP | 871(-SCH/-SCI/-SCM) | 60 | ||
One-step RT-PCR | SCMV | F: CAATCTTGAGGAATGCGGAAAAC R: ATCGATAGGCCCACAAATGAGTCT | HC-pro | 720 | 54 | [136] |
SrMV | F: ACAGCAGAWGCAACRGCACAAGC R: CTCWCCGACATTCCCATCCAAGCC | CP | 860 | |||
SCSMV | F: ATTTTGCCGTCCCGTTTTACATC R: AGCGCGTTGTCTTTCTTCTTCAGTCA | NIa-NIb | 1160 | |||
qRT-PCR | SCSMV | F: FAM-TGCTGCATTGATTTCGTGATGGTG-TAMRA R: FAM-TGCTGCATTGATTTTGTGATGGTG-TAMRA | CP | 115 | 60 | [52] |
IC-RT-PCR | SCSMV | F: GGACAAGGAACGCAGCCACCTCAG R: TTTTTTCCTCCTCACGGGGCAGGTTGATTG | CP | 1047 | 55 | [138] |
SrMV | F: ATCGCCATGGCTGCAGGGGTTGGAACGGTGG R: ATCGCTCGAGGTGGTGCTGTTGCACCCCAAG | CP | ~1000 | 54 | [139] | |
D-IC-RT-PCR | SCMV | F: ATGTC(GA)AAGAA(GA)ATGCGCTTGC R: -d(T)18(AGC)- | CP | ~900 | 56 | [140] |
SCSMV | F: AAGTGGTTAAACGCCTGTGG R: -d(T)18(AGC)- | NIb-CP | ~1400 | 56 | ||
RT-LAMP | SCMV | F3-4: GTGGTCTAATGGTATGGTGTATT B3-4: TCTAGCTGGTGTCCTTGAA FIP-4: CCGGAATGTTGGAGATGCGTGTTGGACAATGATGGATGGA BIP-4: TTCAGTGATGCAGCTGAAGCACGCTGAAGTCCATATCGTG | CP | - | 63 | [141] |
SrMV | F3-4: ACAACAACAAGACATTTCAAACA B3-1: GTTCCGATACTCTATGTACGC FIP-4: CATTAATATTAGGTGAGCATCCGTTCTCTAGATGATACGCAGATGACAG BIP-4: TTCAGTGATGCAGCTGAAGCACGCTGAAGTCCATATCGTG | CP | - | 63 |
Type | Methods | Characteristics | Application | References |
---|---|---|---|---|
Airbrush inoculation | The venom was uniformly sprayed on the leaves of sugarcane under high pressure | The operation is simple; but the inoculation efficiency is not high | Larger group material | [148,149,150] |
Mechanical inoculation | Use fingers dipped in a little quartz sand containing the disease venom, through the young leaf scratch infection | Strict inoculation conditions; but the work efficiency is not high, the wound is not uniform, the effect of vaccination is not stable | Small group material | [145,146,151] |
Pricking or inject inoculation | Use a micro syringe to absorb a small amount of venom and inject it into the axillary buds and subcutaneous tissue of sugarcane species | Venom dosage controllable, standardized use, less damage to plants, the effect of inoculation was higher; but inoculation efficiency mediocre | Moderate group material | [151,152] |
Stalk cutting inoculation | Cut off the above ground part of the cane plant with a sharp blade or branch shears. Immediately drop quantitative of virus liquid into the wound and shade it for 24 h | Simple and efficient operation method, the effect of inoculation was higher; but dark treatment environment is difficult in the field, serious damage to plants | Large group material | [147,153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Wang, Z.; Xu, F.; Pan, Y.-B.; Grisham, M.P.; Xu, L. Sugarcane Mosaic Disease: Characteristics, Identification and Control. Microorganisms 2021, 9, 1984. https://doi.org/10.3390/microorganisms9091984
Lu G, Wang Z, Xu F, Pan Y-B, Grisham MP, Xu L. Sugarcane Mosaic Disease: Characteristics, Identification and Control. Microorganisms. 2021; 9(9):1984. https://doi.org/10.3390/microorganisms9091984
Chicago/Turabian StyleLu, Guilong, Zhoutao Wang, Fu Xu, Yong-Bao Pan, Michael P. Grisham, and Liping Xu. 2021. "Sugarcane Mosaic Disease: Characteristics, Identification and Control" Microorganisms 9, no. 9: 1984. https://doi.org/10.3390/microorganisms9091984
APA StyleLu, G., Wang, Z., Xu, F., Pan, Y.-B., Grisham, M. P., & Xu, L. (2021). Sugarcane Mosaic Disease: Characteristics, Identification and Control. Microorganisms, 9(9), 1984. https://doi.org/10.3390/microorganisms9091984