Anemia and Micronutrient Status of Women of Childbearing Age and Children 6–59 Months in the Democratic Republic of the Congo
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Location
2.2. Study Design
2.3. Sample Size
2.4. Sampling Method
2.5. Eligibility Criteria and Recruitment
2.6. Anthropometry
2.7. Blood Collection, Processing, and Analysis
2.8. Data Preparation and Statistical Analysis
3. Results
3.1. Household Characteristics
3.2. Anemia, Micronutrient, and Infection Status
3.3. Children’s Anthropometry
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- The Ministry of Monitoring, Planning and Implementation of the Modern Revolution; The Ministry of Public Health; ICF International. Democratic Republic of Congo Demographic and Health Survey 2013–2014: Key Findings; MPSMRM, MSP & ICF International: Rockville, MD, USA, 2014. [Google Scholar]
- Allen, L.H. Anemia and iron deficiency: Effects on pregnancy outcome. Am. J. Clin. Nutr. 2000, 71, 1280–1284. [Google Scholar]
- Xiong, X.; Buekens, P.; Alexander, S.; Demianczuk, N.; Wollast, E. Anemia during pregnancy and birth outcome: A meta-analysis. Am. J. Perinatol. 2000, 17, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Stoltzfus, R.J.; Mullany, L.; Black, R.E. Iron deficiency anemia. In Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; Ezzati, M., Lopez, A.D., Rodgers, A., Murray, C.J.L., Eds.; World Health Organization: Geneva, Switzerland, 2004; pp. 163–209. [Google Scholar]
- Bhutta, Z.A.; Ahmed, T.; Black, R.E.; Cousens, S.; Dewey, K.; Giugliani, E.; Haider, B.A.; Kirkwood, B.; Morris, S.S.; Sachdev, H.P.S.; et al. What works? Interventions for maternal and child undernutrition and survival. Lancet 2008, 371, 417–440. [Google Scholar] [CrossRef]
- Hurtado, E.K.; Claussen, A.H.; Scott, K.G. Early childhood anemia and mild or moderate mental retardation. Am. J. Clin. Nutr. 1999, 69, 115–119. [Google Scholar] [PubMed]
- Maketa, V.; Mavoko, H.M.; da Luz, R.I.; Zanga, J.; Lubiba, J.; Kalonji, A.; Lutumba, P.; Van geertruyden, J.-P. The relationship between plasmodium infection, anaemia and nutritional status in asymptomatic children aged under five years living in stable transmission zones in Kinshasa, Democratic Republic of Congo. Malar. J. 2015, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Matangila, J.R.; Doua, J.Y.; Linsuke, S.; Madinga, J.; Inocêncio da Luz, R.; Van Geertruyden, J.-P.; Lutumba, P. Malaria, schistosomiasis and Soil Transmitted Helminth Burden and Their Correlation with Anemia in Children Attending Primary Schools in Kinshasa, Democratic Republic of Congo. PLoS ONE 2014, 9, e110789. [Google Scholar]
- Mikobi, T.M.; Lukusa Tshilobo, P.; Aloni, M.N.; Mvumbi Lelo, G.; Akilimali, P.Z.; Muyembe-Tamfum, J.J.; Race, V.; Matthijs, G.; Mbuyi Mwamba, J.M. Correlation between the lactate dehydrogenase levels with laboratory variables in the clinical severity of sickle cell anemia in Congolese patients. PLoS ONE 2015, 10, e0123568. [Google Scholar] [CrossRef] [PubMed]
- Tshilolo, L.; Aissi, L.M.; Lukusa, D.; Kinsiama, C.; Wembonyama, S.; Gulbis, B.; Vertongen, F. Neonatal screening for sickle cell anaemia in the Democratic Republic of the Congo: Experience from a pioneer project on 31 204 newborns. J. Clin. Pathol. 2009, 62, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Barclay, D.V.; Mauron, J.; Blondel, A.; Cavadini, C.; Verwilghen, A.M. Micronutrient intake and status in rural Democratic Republic of Congo. Nutr. Res. 2003, 23, 659–671. [Google Scholar] [CrossRef]
- Kuvibidila, S.; Warrier, R.; Ode, D.; Yu, L. Serum transferrin receptor concentrations in women with mild malnutrition. Am. J. Clin. Nutr. 1996, 63, 596–601. [Google Scholar] [PubMed]
- D’Souza, R.M.; D’Souza, R. Vitamin A for treating measles in children. Cochrane Database Syst. Rev. 2002, 1, CD001479. [Google Scholar]
- Gorstein, J.; Sullivan, K.M.; Parvanta, I.; Begin, F. Indicators and Methods for Crossectional Surveys of Vitamin and Mineral Status of Populations; The Micronutrient Initiative: Ottawa, ON, Canada; The Centers for Disease Control and Prevention: Atlanta, GA, USA, 2007; p. 155. [Google Scholar]
- Cogill, B. Anthropometric Indicators Measurement Guide; Food and Nutrition Technical Assistance (FANTA) Project: Washington, DC, USA, 2003. [Google Scholar]
- De Onis, M.; Garza, C.; Victora, C.G.; Onyango, A.W.; Frongillo, E.A.; Martines, J. The WHO multicentre growth reference study: Planning, study design, and methodology. Food Nutr. Bull. 2004, 25, 15S–26S. [Google Scholar] [CrossRef]
- De Onis, M.; Onyango, A.W.; Van den Broeck, J.; Chumlea, C.W.; Martorell, R. Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr. Bull. 2004, 25, 27S–36S. [Google Scholar] [CrossRef]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [PubMed]
- Smith, J.C.; Butrimovitz, G.P.; Purdy, W.C. Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin. Chem. 1979, 25, 1487–1491. [Google Scholar]
- Molloy, A.M.; Scott, J.M. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Methods Enzymol. 1997, 281, 43–53. [Google Scholar] [PubMed]
- Bahl, R.; Bhandari, N.; Wahed, M.A.; Kumar, G.T.; Bhan, M.K.; Arthur, P.; Kirkwood, B.R.; Morris, S.; Etego, S.A.; Zandoh, C.; et al. Vitamin A supplementation of women postpartum and of their infants at immunization alters breast milk retinol and infant vitamin A status. J. Nutr. 2002, 132, 3243–3248. [Google Scholar] [PubMed]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2001; Volume 2005. [Google Scholar]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Thurnham, D.; McCabe, G.; Northrop-Clewes, C.; Nestel, P. Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: Meta-analysis. Lancet 2003, 362, 2052–2058. [Google Scholar] [CrossRef]
- Magnani, R. Food and Nutrition Technical Assistance (FANTA) Sampling Guide; Food and Nutrition Technical Assistance (FANTA) Project: Washington, DC, USA, 1997; pp. 1–52. [Google Scholar]
- Dallman, P.R.; Looker, A.C.; Johnson, C.L.; Carroll, M.; Hallberg, L.; Asp, N.G. Influence of age on laboratory criteria for the diagnosis of iron deficiency anaemia and iron deficiency in infants and children. In Proceedings of the Swedish Nutrition Foundation’s 20th International Symposium and the Swedish Society of Medicine Berzelius Symposium XXXI, Stockholm, Sweden, 24–27 August 1995; John Libbey and Co. Ltd.: London, UK, 1996; pp. 65–74. [Google Scholar]
- Sullivan, K.M.; Mei, Z.; Grummer-Strawn, L.; Parvanta, I. Haemoglobin adjustments to define anaemia. Trop. Med. Int. Health 2008, 13, 1267–1271. [Google Scholar] [CrossRef] [PubMed]
- Dirren, H.; Logman, M.H.; Barclay, D.V.; Freire, W.B. Altitude correction for hemoglobin. Eur. J. Clin. Nutr. 1994, 48, 625–632. [Google Scholar] [PubMed]
- Beutler, E.; West, C. Hematologic differences between African-Americans and whites: The roles of iron deficiency and alpha-thalassemia on hemoglobin levels and mean corpuscular volume. Blood 2005, 106, 740–745. [Google Scholar] [CrossRef]
- Johnson-Spear, A.; Yip, R. Hemoglobin difference with comparable iron anemia between black status: justification and white women for race-specific anemia critera. Am. J. Clin. Nutr. 1994, 60, 117–121. [Google Scholar] [PubMed]
- Perry, G.S.; Byers, T.; Yip, R.; Margen, S. Iron nutrition does not account for the hemoglobin differences between blacks and whites. J. Nutr. 1992, 122, 1417–1424. [Google Scholar] [PubMed]
- Nestel, P. Adjusting Hemoglobin Values in Program Surveys; ILSI Human Nutrition Institute: Washington, DC, USA, 2002. [Google Scholar]
- Dallman, P.; Barr, G.; Allen, C.; Shinefield, H. Hemoglobin concentration in white, black, and Oriental children: Is there a need for separate criteria in screening for anemia? Am. J. Clin. Nutr. 1978, 31, 377–380. [Google Scholar] [PubMed]
- World Health Organization. Assessing the Iron Status of Populations, 2nd ed.; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Burger, S.; Pierre-Louis, J. A Procedure to Estimate the Accuracy and Reliability of HemoCue™ Measurements of Survey Workers; ILSI Human Nutrition Institute: Washington, DC, USA, 2003. [Google Scholar]
- Bain, B.J. Haemoglobinopathy Diagnosis, 2nd ed.; Blackwell Publishing Ltd.: Oxford, UK, 2006. [Google Scholar]
- Piel, F.B.; Patil, A.P.; Howes, R.E.; Nyangiri, O.A.; Gething, P.W.; Williams, T.N.; Weatherall, D.J.; Hay, S.I. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat. Commun. 2010, 1, 104. [Google Scholar] [CrossRef] [PubMed]
- Nkhoma, E.T.; Poole, C.; Vannappagari, V.; Hall, S.A.; Beutler, E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis. Blood Cells Mol. Dis. 2009, 42, 267–278. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Yiannakis, M.; Main, B.; Devenish, R.; Anderson, C.; An, U.S.; Williams, S.M.; Gibson, R.S. Genetic hemoglobin disorders, infection, and deficiencies of iron and vitamin A determine anemia in young Cambodian children. J. Nutr. 2012, 142, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Karakochuk, C.D.; Whitfield, K.C.; Barr, S.I.; Lamers, Y.; Devlin, A.M.; Vercauteren, S.M.; Kroeun, H.; Talukder, A.; McLean, J.; Green, T.J. Genetic hemoglobin disorders rather than iron deficiency are a major predictor of hemoglobin concentration in women of reproductive age in rural Prey Veng, Cambodia. J. Nutr. 2015, 145, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, R.A.; Winichagoon, P.; Green, T.; Wasantwisut, E.; Pongcharoen, T.; Bailey, K.B.; Gibson, R.S. Only a small proportion of anemia in northeast Thai schoolchildren is associated with iron deficiency. Am. J. Clin. Nutr. 2005, 82, 380–387. [Google Scholar] [PubMed]
- Menendez, C.; Quinto, L.L.; Kahigwa, E.; Alvarez, L.; Fernandez, R.; Gimenez, N.; Schellenberg, D.; Aponte, J.J.; Tanner, M.; Alonso, P.L. Effect of malaria on soluble transferrin receptor levels in Tanzanian infants. Am. J. Trop. Med. Hyg. 2001, 65, 138–142. [Google Scholar] [PubMed]
- Gibson, R.S.; Huddle, J.M. Suboptimal zinc status in pregnant Malawian women: Its association with low intakes of poorly available zinc, frequent reproductive cycling, and malaria. Am. J. Clin. Nutr. 1998, 67, 702–709. [Google Scholar] [PubMed]
- Conclusions and recommendations of the WHO Consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food Nutr. Bull. 2007, 28, S621–S627.
- Stabler, S.P.; Allen, R.H. Vitamin B12 deficiency as a worldwide problem. Annu. Rev. Nutr. 2004, 24, 299–326. [Google Scholar] [CrossRef] [PubMed]
- Engle-stone, R.; Haskell, M.J.; Ndjebayi, A.O.; Nankap, M.; Erhardt, J.G.; Gimou, M.; Brown, K.H. Plasma retinol-binding protein predicts plasma retinol concentration in both infected and uninfected Cameroonian women and children. J. Nutr. 2011, 141, 2233–2241. [Google Scholar] [CrossRef]
- Donnen, P.; Brasseur, D.; Dramaix, M.; Vertongen, F.; Ngoy, B.; Zihindula, M.; Hennart, P. Vitamin A deficiency and protein-energy malnutrition in a sample of pre-school age children in the Kivu Province in Zaire. Eur. J. Clin. Nutr. 1996, 50, 456–461. [Google Scholar] [PubMed]
- Zagré, N.M.; Delpeuch, F.; Traissac, P.; Delisle, H. Red palm oil as a source of vitamin A for mothers and children: impact of a pilot project in Burkina Faso. Public Health Nutr. 2003, 6, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Souganidis, E.; Laillou, A.; Leyvraz, M.; Moench-Pfanner, R. A comparison of retinyl palmitate and red palm oil β-carotene as strategies to address vitamin A deficiency. Nutrients 2013, 5, 3257–3271. [Google Scholar] [CrossRef] [PubMed]
- de Benoist, B.; Darnton-hill, I.; Davidsson, L.; Fontaine, O.; Hotz, C. Conclusions of the joint WHO/UNICEF/IAEA/IZiNCG interagency meeting on zinc status indicators. Food Nutr. Bull. 2007, 28, 480–486. [Google Scholar]
- Lowe, N.M.; Fekete, K.; Decsi, T. Methods of assessment of zinc status in humans: A systematic review. Am. J. Clin. Nutr. 2009, 89, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Kuvibidila, S.; Vuvu, M. Unusual low plasma levels of zinc in non-pregnant Congolese women. Br. J. Nutr. 2009, 101, 1783–1786. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Abebe, Y.; Hambidge, K.M.; Arbide, I.; Teshome, A.; Stoecker, B.J. Inadequate feeding practices and impaired growth among children from subsistence farming households in Sidama, Southern Ethiopia. Matern. Child Nutr. 2009, 5, 260–275. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.L.; Gibson, R.S.; Opare-Obisaw, C.; Ounpuu, S.; Thompson, L.U.; Lehrfeld, J. The zinc nutriture of preschool children living in two African countries. J. Nutr. 1993, 123, 1487–1496. [Google Scholar]
- Abebe, Y.; Bogale, A.; Hambidge, K.M.; Stoecker, B.J.; Arbide, I.; Teshome, A.; Krebs, N.F.; Westcott, J.E.; Bailey, K.B.; Gibson, R.S. Inadequate intakes of dietary zinc among pregnant women from subsistence households in Sidama, Southern Ethiopia. Public Health Nutr. 2008, 11, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.L.; Gibson, R.S.; Opare-Obisaw, C.; Osei-Opare, F.; Stephen, A.M.; Lehrfeld, J.; Thompson, L.U. The zinc, calcium, copper, manganese, nonstarch polysaccharide and phytate content of seventy-eight locally grown and prepared African foods. J. Food Compos. Anal. 1993, 6, 87–99. [Google Scholar] [CrossRef]
- World Food Programme. (CFSVA) Comprehensive Food Security and Vulnerability Analysis: DRC WFP/IFPRI; World Food Program (WFP): Rome, Italy, 2014. [Google Scholar]
- Lonnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378–1383. [Google Scholar]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Wieringa, F.T.; Dijkhuizen, M.A.; West, C.E.; Northrop-clewes, C.A. Estimation of the effect of the acute phase response on indicators of micronutrient status in Indonesian infants. J. Nutr. 2002, 3061–3066. [Google Scholar]
- Manary, M.J.; Abrams, S.A.; Griffin, I.J.; Quimper, M.M.; Shulman, R.J.; Hamzo, M.G.; Chen, Z.; Maleta, K.; Manary, M.J. Perturbed zinc homeostasis in rural 3–5-year-old Malawian children is associated with abnormalities in intestinal permeability attributed to tropical enteropathy. Pediatric Res. 2010, 67, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, J.E.; Wuehler, S.E.; de Romaña, D.L.; Penny, M.E.; Sempértegui, F.; Brown, K.H. The time of day and the interval since previous meal are associated with plasma zinc concentrations and affect estimated risk of zinc deficiency in young children in Peru and Ecuador. Eur. J. Clin. Nutr. 2011, 65, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Zemel, B.S.; Kawchak, D.A.; Fung, E.B.; Ohene-Frempong, K.; Stallings, V.A. Effect of zinc supplementation on growth and body composition in children with sickle cell disease. Am. J. Clin. Nutr. 2002, 75, 300–307. [Google Scholar] [PubMed]
- Fung, E.B. Nutritional deficiencies in patients with thalassemia. Ann. N. Y. Acad. Sci. 2010, 1202, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; Hotz, C. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar] [PubMed]
- Harvey, L.J.; Armah, C.N.; Dainty, J.R.; Foxall, R.J.; Lewis, D.J.; Langford, N.J.; Fairweather-Tait, S.J. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br. J. Nutr. 2005, 94, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Izale, K.; Govender, I.; Fina, J.-P.L.; Tumbo, J. Factors that influence contraceptive use amongst women in Vanga health district, Democratic Republic of Congo. Afr. J. Prim. Health Care Fam. Med. 2014, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
South Kivu | Kongo Central | |
---|---|---|
Total, n (%) | 444 (59.7) | 300 (40.3) |
Household size, mean ± SD | 6.6 ± 2.6 | 5.7 ± 2.3 |
Mother’s education level, n (%) | ||
No schooling | 214/444 (48.2) | 29/299 (9.7) |
Primary school | 139/444 (31.3) | 141/299 (47.2) |
Secondary | 87/444 (19.6) | 128/299 (42.8) |
Tertiary/higher education | 2/444 (0.5) | 1/299 (0.3) |
Other | 2/444 (0.5) | 0/299 (0) |
Material of household roof, n (%) | ||
Leaf | 118/443 (26.6) | 186/300 (62.0) |
Tiles | 18/443 (4.1) | 19/300 (6.3) |
Metal/tin | 306/443 (69.1) | 95/300 (31.7) |
Other | 1/443 (0.2) | 0/300 (0) |
Main source of household fuel, n (%) | ||
Electricity | 11/443 (2.5) | 26/300 (8.7) |
Liquified petroleum gas | 2/443 (0.5) | 0/300 (0) |
Natural gas | 15/443 (3.4) | 2/300 (0.7) |
Kerosene | 86/443 (19.4) | 79/300 (26.3) |
Charcoal | 325/443 (73.4) | 193/300 (64.3) |
Other | 4/443 (0.9) | 0/300 (0) |
Main source of drinking water, n (%) | ||
Piped water | 254/441 (57.6) | 34/300 (11.3) |
Open well | 9/441 (2.0) | 1/300 (0.3) |
Covered well/borehole | 29/441 (6.6) | 15/300 (5.0) |
Surface water (spring, river, or pond) | 101/441 (22.9) | 248/300 (82.7) |
Rainwater | 22/441 (5.0) | 2/300 (0.7) |
Other | 26/441 (5.9) | 0/300 (0) |
Type of household toilet, n (%) | ||
No facility (bush or field) | 16/443 (3.6) | 45/299 (15.1) |
Flush toilet | 6/443 (1.4) | 14/299 (4.7) |
Pit latrine | 420/443 (94.8) | 239/299 (79.9) |
Bucket | 1/443 (0.2) | 1/299 (0.3) |
Does your household have a bednet, n (%) | ||
Yes | 281/444 (63.3) | 205/300 (68.3) |
Has the child received a vitamin A capsule in the past 6 months, n (%) | ||
Yes | 397/444 (89.4) | 279/299 (93.3) |
Has the child received a deworming tablet in the last 6 months, n (%) | ||
Yes | 368/444 (82.8) | 232/300 (77.3) |
Has the child received iron syrup or tablets in the last 3 months, n (%) | ||
Yes | 36/442 (8.1) | 30/298 (10.1) |
South Kivu | Kongo Central | p | |
---|---|---|---|
Total, n (%) | 444 (59.7) | 300 (40.3) | NA |
Age, year | 29.2 ± 0.4 | 29.9 ± 0.4 | 0.2 |
Micronutrients | |||
Vitamin B12, pmol/L | 528 ± 11 | 684 ± 16 | <0.00001 |
RBP (unadjusted), µmol/L | 1.89 ± 0.03 | 1.70 ± 0.04 | <0.00001 |
RBP (adjusted) 2, µmol/L | 1.95 ± 0.03 | 1.75 ± 0.04 | <0.00001 |
Zinc (unadjusted), µmol/L | 8.9 ± 0.1 | 9.0 ± 0.3 | 0.9 |
Zinc (adjusted) 3, µmol/L | 9.1 ± 0.8 | 9.2 ± 0.3 | 0.8 |
Folate, nmol/L | 38 ± 0.9 | 22 ± 0.8 | <0.00001 |
Ferritin (unadjusted), µg/L | 80 ± 3 | 61 ± 2 | <0.00001 |
Ferritin (adjusted) 2, µg/L | 72 ± 2 | 54 ± 2 | <0.00001 |
sTfR, mg/L | 6.8 ± 0.1 | 7.3 ± 0.2 | 0.07 |
Hb, g/L | |||
Unadjusted Hb | 135 ± 1 | 127 ± 1 | <0.00001 |
Hb adjusted for altitude | 131 ± 1 | 126 ± 1 | <0.00001 |
Hb adjusted for ethnicity | 145 ± 1 | 137 ± 1 | <0.00001 |
Hb adjusted for altitude and ethnicity | 141 ± 1 | 136 ± 1 | <0.00001 |
Inflammation Biomarkers | |||
Acute, CRP, mg/L | 2.09 ± 0.28 | 2.28 ± 0.31 | 0.6 |
Chronic, AGP, g/L | 0.83 ± 0.02 | 0.87 ± 0.03 | 0.3 |
6–23 Months (n = 286) | 24–59 Months (n = 458) | |||||
---|---|---|---|---|---|---|
South Kivu | Kongo Central | P | South Kivu | Kongo Central | p | |
Total, n (%) | 158 (55.2) | 128 (44.8) | NA | 286 (62.4) | 172 (37.6) | NA |
Age, month | 14.2 ± 0.4 | 14.9 ± 0.4 | 0.2 | 37.3 ± 0.5 | 38.0 ± 0.7 | 0.4 |
Micronutrients | ||||||
Vitamin B12, pmol/L | 370 ± 15 | 443 ± 18 | 0.002 | 487 ± 14 | 630 ± 22 | <0.00001 |
RBP (unadjusted), µmol/L | 1.10 ± 0.03 | 0.93 ± 0.03 | 0.0001 | 1.08 ± 0.02 | 0.92 ± 0.02 | <0.00001 |
RBP (adjusted) 2, µmol/L | 1.20 ± 0.03 | 1.05 ± 0.03 | 0.0008 | 1.16 ± 0.02 | 1.04 ± 0.02 | 0.0003 |
Zinc (unadjusted), µmol/L | 9.5 ± 0.2 | 9.6 ± 0.2 | 0.7 | 9.5 ± 0.1 | 9.2 ± 0.2 | 0.2 |
Zinc (adjusted) 3, µmol/L | 10.1 ± 0.2 | 10.3 ± 0.2 | 0.5 | 10.0 ± 0.1 | 9.9 ± 0.2 | 0.8 |
Folate, nmol/L | 41 ± 1 | 27 ± 1 | <0.00001 | 43 ± 1 | 29 ± 1 | <0.00001 |
Ferritin (unadjusted), µg/L | 43 ± 4 | 86 ± 8.3 | <0.00001 | 71 ± 3 | 126 ± 6 | <0.00001 |
Ferritin (adjusted) 2, µg/L | 32 ± 3 | 55 ± 5 | <0.00001 | 55 ± 2 | 84 ± 4 | <0.00001 |
sTfR, mg/L | 10.5 ± 0.5 | 12.7 ± 0.6 | 0.003 | 7.8 ± 0.2 | 10.3 ± 0.4 | <0.00001 |
Hb, g/L | ||||||
Unadjusted Hb | 111 ± 1 | 113 ± 2 | 0.4 | 118 ± 1 | 113 ± 1 | 0.0005 |
Hb adjusted for altitude | 107 ± 1 | 112 ± 2 | 0.003 | 113 ± 1 | 112 ± 1 | 0.6 |
Hb adjusted for ethnicity | 121 ± 1 | 123 ± 2 | 0.4 | 128 ± 1 | 123 ± 1 | 0.0005 |
Hb adjusted for altitude and ethnicity | 117 ± 1 | 123 ± 2 | 0.003 | 123 ± 1 | 122 ± 1 | 0.6 |
Inflammation Biomarkers | ||||||
Acute, CRP, mg/L | 4.98 ± 0.83 | 9.46 ± 1.27 | 0.003 | 3.81 ± 0.51 | 10.67 ± 1.12 | <0.00001 |
Chronic, AGP, g/L | 1.46 ± 0.07 | 1.68 ± 0.08 | 0.05 | 1.51 ± 0.05 | 1.75 ± 0.07 | 0.008 |
South Kivu | Kongo Central | |
---|---|---|
Total, n (%) | 444 (59.7) | 300 (40.3) |
BMI, kg/m2, n (%) | ||
Underweight, <18.5 | 13 (3.0) | 45 (15.0) |
Normal, 18.5–24.9 | 316 (73.5) | 228 (76.0) |
Overweight, 25.0–29.9 | 91 (21.2) | 22 (7.3) |
Obese, ≥30.0 | 10 (2.3) | 5 (1.7) |
Micronutrient Deficiencies, % (95%CI) | ||
Vitamin B12, <150 pmol/L | 0.5 (0.1, 1.6) | 0.7 (0.08, 2.6) |
RBP (unadjusted), <0.7 µmol/L | 0.2 (0.0, 1.2) | 1.3 (0.36, 3.4) |
RBP (adjusted) 2, <0.7 µmol/L | 0 (0, 0.8) * | 0.7 (0.1, 2.4) |
Zinc (unadjusted), <9.0 µmol/L | 55.1 (50.3, 59.8) | 60.0 (54.2, 65.6) |
Zinc (adjusted) 3, <9.0 µmol/L | 51.8 (47.0, 56.6) | 57.7 (51.9, 63.3) |
Folate, <6.8 nmol/L | 0.7 (0.1, 2.0) | 1.0 (0.2, 3.0) |
Ferritin (unadjusted), <15 µg/L | 3.9 (2.3, 6.1) | 4.7 (2.6, 7.7) |
Ferritin (adjusted) 2, <15 µg/L | 5.4 (3.5, 8.0) | 5.3 (3.1, 8.5) |
sTfR, >8.3 mg/L | 17.7 (14.2, 21.6) | 20.7 (16.2, 25.7) |
Anemia, Hb < 120 g/L, % (95%CI) | ||
Unadjusted Hb | 10.2 (7.5, 13.4) | 29.2 (24.1, 34.7) |
Hb adjusted for altitude | 16.5 (13.2, 20.3) | 31.9 (26.7, 37.5) |
Hb adjusted for ethnicity | 3.4 (1.9, 5.5) | 9.4 (6.3, 13.2) |
Hb adjusted for altitude and ethnicity | 5.9 (3.9, 8.5) | 10.4 (7.2, 14.4) |
Iron Deficiency Anemia, % (95%CI) | ||
Hb < 120 g/L and ferritin < 15 µg/L 2 | 0.9 (0.2, 2.3) | 0.7 (0.1, 2.4) |
Hb < 120 g/L and sTfR > 8.3 mg/L | 2.7 (1.4, 4.7) | 2.3 (0.9, 4.8) |
Inflammation Biomarkers, % (95%CI) | ||
Acute, CRP, >5 mg/L | 6.3 (4.3, 9.0) | 9.7 (6.7, 13.6) |
Chronic, AGP, >1 g/L | 22.7 (18.8, 26.9) | 23.7 (19.0, 28.9) |
Malaria Infection, % (95%CI) | 1.8 (0.7, 3.6) | 7.3 (4.7, 10.9) |
6–23 Months | 24–59 Months | |||
---|---|---|---|---|
South Kivu | Kongo Central | South Kivu | Kongo Central | |
Total, n (%) | 158 (55.2) | 128 (44.8) | 286 (62.4) | 172 (37.6) |
Micronutrient Deficiencies, % (95%CI) | ||||
Vitamin B12, <150 pmol/L | 4.9 (2.0, 9.8) | 1.8 (0.2, 6.5) | 3.0 (1.3, 5.9) | 0.0 (0.0, 2.3) * |
RBP (unadjusted), <0.7 µmol/L | 6.5 (3.0, 11.9) | 19.0 (12.4, 27.1) | 12.0 (8.3, 16.6) | 24.3 (18.0, 31.4) |
RBP (adjusted) 2, <0.7 µmol/L | 1.3 (0.2, 4.5) | 9.4 (4.9, 15.8) | 5.6 (3.2, 8.9) | 9.9 (5.9, 15.4) |
Zinc (unadjusted), <8.7 µmol/L | 36.1 (28.2, 44.5) | 31.0 (22.8, 40.3) | 34.7 (29.0, 40.7) | 38.7 (31.1, 46.6) |
Zinc (adjusted) 3, <8.7 µmol/L | 23.1 (16.3, 31.2) | 20.0 (13.1, 28.4) | 24.8 (19.6, 30.6) | 27.2 (20.5, 34.7) |
Folate, <6.8 nmol/L | 0 (0.0, 2.5) * | 0 (0.0, 3.3) * | 0 (0.0, 1.4) * | 0 (0.0, 2.3) * |
Ferritin (unadjusted), <12 µg/L | 14.3 (9.0, 21.3) | 9.9 (5.2, 16.7) | 4.3 (2.1, 7.5) | 0.6 (0.0, 3.3) |
Ferritin (adjusted) 2, <12 µg/L | 23.0 (16.3, 30.9) | 15.7 (9.7, 23.4) | 5.4 (3.0, 8.9) | 0.6 (0.0, 3.3) |
sTfR, >8.3 mg/L | 51.1 (42.5, 59.6) | 74.4 (65.6, 81.9) | 23.2 (18.2, 28.9) | 58.0 (50.2, 65.5) |
Anemia, Hb < 110 g/L, % (95%CI) | ||||
Unadjusted Hb | 45.2 (37.3, 53.4) | 41.4 (32.8, 50.4) | 24.2 (19.4, 29.6) | 42.7 (35.2, 50.5) |
Hb adjusted for altitude | 58.6 (50.5, 66.4) | 42.2 (33.5, 51.2) | 35.4 (29.9, 41.3) | 44.4 (36.9, 52.2) |
Hb adjusted for ethnicity | 18.5 (12.7, 25.4) | 21.1 (14.3, 29.2) | 8.4 (5.5, 12.3) | 22.8 (16.7, 29.8) |
Hb adjusted for altitude and Ethnicity | 26.1 (19.4, 33.7) | 25.0 (17.8, 33.4) | 14.0 (10.2, 18.6) | 22.8 (16.7, 29.8) |
Iron Deficiency Anemia 2,4, % (95%CI) | ||||
Hb < 110 g/L and ferritin < 12 µg/L | 9.4 (5.1, 15.6) | 2.5 (0.5, 7.1) | 0.4 (0.0, 2.1) | 0.0 (0.0, 2.2) * |
Hb < 110 g/L and sTfR > 8.3 mg/L | 17.4 (11.5, 24.8) | 20.7 (13.8, 29.0) | 5.1 (2.7, 8.5) | 18.5 (12.9, 25.2) |
Inflammation Biomarkers, % (95%CI) | ||||
Acute, CRP, >5 mg/L | 22.3 (15.7, 30.1) | 42.1 (33.2, 51.5) | 16.7 (12.3, 21.8) | 42.6 (35.0, 50.4) |
Chronic, AGP, >1 g/L | 64.7 (56.2, 72.7) | 71.9 (63.0, 79.7) | 61.2 (55.0, 67.2) | 71.0 (63.5, 77.7) |
Malaria Infection, % (95%CI) | 2.2 (0.5, 6.3) | 33.6 (25.5, 42.5) | 4.3 (2.1, 7.5) | 44.2 (36.6, 51.9) |
South Kivu | Kongo Central | All Children | |
---|---|---|---|
Total, n (%) | 444 (59.7) | 400 (40.3) | 744 (100) |
Underweight 2, WAZ < −2 SD | |||
6–23 months | 25 (17.0) | 17 (14.2) | 42 (15.7) |
24–59 months | 67 (26.2) | 43 (25.9) | 110 (26.1) |
Wasted 3, WHZ < −2 SD | |||
6–23 months | 10 (6.8) | 7 (5.8) | 17 (6.4) |
24–59 months | 9 (3.6) | 8 (5.2) | 17 (4.2) |
Stunted 4, HAZ < −2 SD | |||
6–23 months | 68 (46.3) | 36 (30.0) | 104 (39.0) |
24–59 months | 168 (67.2) | 82 (53.3) | 250 (61.9) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harvey-Leeson, S.; Karakochuk, C.D.; Hawes, M.; Tugirimana, P.L.; Bahizire, E.; Akilimali, P.Z.; Michaux, K.D.; Lynd, L.D.; Whitfield, K.C.; Moursi, M.; et al. Anemia and Micronutrient Status of Women of Childbearing Age and Children 6–59 Months in the Democratic Republic of the Congo. Nutrients 2016, 8, 98. https://doi.org/10.3390/nu8020098
Harvey-Leeson S, Karakochuk CD, Hawes M, Tugirimana PL, Bahizire E, Akilimali PZ, Michaux KD, Lynd LD, Whitfield KC, Moursi M, et al. Anemia and Micronutrient Status of Women of Childbearing Age and Children 6–59 Months in the Democratic Republic of the Congo. Nutrients. 2016; 8(2):98. https://doi.org/10.3390/nu8020098
Chicago/Turabian StyleHarvey-Leeson, Sarah, Crystal D. Karakochuk, Meaghan Hawes, Pierrot L. Tugirimana, Esto Bahizire, Pierre Z. Akilimali, Kristina D. Michaux, Larry D. Lynd, Kyly C. Whitfield, Mourad Moursi, and et al. 2016. "Anemia and Micronutrient Status of Women of Childbearing Age and Children 6–59 Months in the Democratic Republic of the Congo" Nutrients 8, no. 2: 98. https://doi.org/10.3390/nu8020098
APA StyleHarvey-Leeson, S., Karakochuk, C. D., Hawes, M., Tugirimana, P. L., Bahizire, E., Akilimali, P. Z., Michaux, K. D., Lynd, L. D., Whitfield, K. C., Moursi, M., Boy, E., Foley, J., McLean, J., Houghton, L. A., Gibson, R. S., & Green, T. J. (2016). Anemia and Micronutrient Status of Women of Childbearing Age and Children 6–59 Months in the Democratic Republic of the Congo. Nutrients, 8(2), 98. https://doi.org/10.3390/nu8020098