Primary Lung Cancer Organoids for Personalized Medicine—Are They Ready for Clinical Use?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Lung Cancer Organoid Methodology
3. Characterization of Primary Non-Small Cell Lung Cancer Organoids
4. Lung Cancer Organoids as Model Systems for Lung Cancer Biology Research
5. Clinical Applications of NSCLC Organoid Systems: Present and Future
5.1. Assessment of Drug Sensitivity
5.2. Studying Cancer Stem Cells
5.3. Whole-Organoid Xenografts
6. Challenges and Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- König, D.; Prince, S.; Rothschild, S. Targeted Therapy in Advanced and Metastatic Non-Small Cell Lung Cancer. An Update on Treatment of the Most Important Actionable Oncogenic Driver Alterations. Cancers 2021, 13, 804. [Google Scholar] [CrossRef]
- Benali, R.; Tournier, J.M.; Chevillard, M.; Zahm, J.M.; Klossek, J.M.; Hinnrasky, J.; Gaillard, D.; Maquart, F.X.; Puchelle, E. Tubule formation by human surface respiratory epithelial cells cultured in a three-dimensional collagen lattice. Am. J. Physiol. Cell. Mol. Physiol. 1993, 264, L183–L192. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.P.; Bear, C.E.; Chin, S.; Pasceri, P.; Thompson, T.O.; Huan, L.-J.; Ratjen, F.; Ellis, J.; Rossant, J. Directed differentiation of human pluripotent stem cells into mature airway epithelia ex-pressing functional CFTR protein. Nat. Biotechnol. 2012, 30, 876–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dye, B.R.; Hill, D.; Ferguson, M.A.H.; Tsai, Y.-H.; Nagy, M.S.; Dyal, R.; Wells, J.M.; Mayhew, C.; Nattiv, R.; Klein, O.; et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015, 4, e05098. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-W.; Huang, S.X.; De Carvalho, A.L.R.T.; Ho, S.-H.; Islam, M.N.; Volpi, S.; Notarangelo, L.D.; Ciancanelli, M.; Casanova, J.-L.; Bhattacharya, J.; et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nature 2017, 19, 542–549. [Google Scholar] [CrossRef]
- Tan, Q.; Choi, K.M.; Sicard, D.; Tschumperlin, D.J. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 2016, 113, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Hume, A.J.; Abo, K.M.; Werder, R.B.; Villacorta-Martin, C.; Alysandratos, K.-D.; Beermann, M.L.; Simone-Roach, C.; Lindstrom-Vautrin, J.; Olejnik, J.; et al. SARS-CoV-2 Infection of Pluripotent Stem Cell-Derived Human Lung Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response. Cell Stem Cell 2020, 27, 962–973.e967. [Google Scholar] [CrossRef]
- Katsura, H.; Sontake, V.; Tata, A.; Kobayashi, Y.; Edwards, C.E.; Heaton, B.E.; Konkimalla, A.; Asakura, T.; Mikami, Y.; Fritch, E.J.; et al. Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction. Cell Stem Cell 2020, 27, 890–904.e8. [Google Scholar] [CrossRef]
- Endo, H.; Okami, J.; Okuyama, H.; Kumagai, T.; Uchida, J.; Kondo, J.; Takehara, T.; Nishizawa, Y.; Imamura, F.; Higashiyama, M.; et al. Spheroid Culture of Primary Lung Cancer Cells with Neuregulin 1/HER3 Pathway Activation. J. Thorac. Oncol. 2013, 8, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Sachs, N.; Papaspyropoulos, A.; Ommen, D.D.Z.; Heo, I.; Böttinger, L.; Klay, D.; Weeber, F.; Huelsz-Prince, G.; Iakobachvili, N.; Amatngalim, G.D.; et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019, 38, e100300. [Google Scholar] [CrossRef]
- Kim, M.; Mun, H.; Sung, C.O.; Cho, E.J.; Jeon, H.-J.; Chun, S.-M.; Jung, D.J.; Shin, T.H.; Jeong, G.S.; Kim, D.K.; et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 2019, 10, 3991. [Google Scholar] [CrossRef]
- Pomares, A.H.; De-Maya-Girones, J.D.; Calabuig-Fariñas, S.; Lucas-Dominguez, R.; Martínez, A.; Pardo-Sánchez, J.M.; Alonso, S.; Blasco, A.; Guijarro, R.; Martorell, M.; et al. Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis. 2019, 10, 660. [Google Scholar] [CrossRef]
- Shi, R.; Radulovich, N.; Ng, C.; Liu, N.; Notsuda, H.; Cabanero, M.; Martins-Filho, S.N.; Raghavan, V.; Li, Q.; Mer, A.S.; et al. Organoid Cultures as Preclinical Models of Non–Small Cell Lung Cancer. Clin. Cancer Res. 2019, 26, 1162–1174. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Qian, Y.; Li, W.; Liu, L.; Yu, L.; Liu, X.; Wu, G.; Wang, Y.; Luo, W.; Fang, F.; et al. Human Lung Adenocarcinoma-Derived Organoid Models for Drug Screening. iScience 2020, 23, 101411. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, K.K.; Monkhorst, K.; Schipper, L.J.; Hartemink, K.J.; Smit, E.F.; Kaing, S.; de Groot, R.; Wolkers, M.C.; Clevers, H.; Cuppen, E.; et al. Challenges in Establishing Pure Lung Cancer Organoids Limit Their Utility for Personalized Medicine. Cell Rep. 2020, 31, 107588. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sui, X.; Song, F.; Li, Y.; Li, K.; Chen, Z.; Yang, F.; Chen, X.; Zhang, Y.; Wang, X.; et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat. Commun. 2021, 12, 2581. [Google Scholar] [CrossRef] [PubMed]
- Yokota, E.; Iwai, M.; Yukawa, T.; Yoshida, M.; Naomoto, Y.; Haisa, M.; Monobe, Y.; Takigawa, N.; Guo, M.; Maeda, Y.; et al. Clinical application of a lung cancer organoid (tumoroid) culture system. NPJ Precis. Oncol. 2021, 5, 29. [Google Scholar] [CrossRef]
- van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drost, J.; Karthaus, W.R.; Gao, D.; Driehuis, E.; Sawyers, C.L.; Chen, Y.; Clevers, H. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 2016, 11, 347–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, K.; Choi, D.; Sawyers, C.L.; Karthaus, W.R. Prostate Organoid Cultures as Tools to Translate Genotypes and Mutational Profiles to Pharmacological Responses. J. Vis. Exp. 2019, e60346. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Mady, H.H.; Melhem, M.F.; Keohavong, P. Analysis of p53 mutations in histologically normal lung tissues and lung tumors from non-small cell lung cancer patients. Mol. Carcinog. 2008, 48, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.-H.; Karlsson, K.; Kuo, C.J. Applications of organoids for cancer biology and precision medicine. Nat. Rev. Cancer 2020, 1, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Daniel, V.C.; Marchionni, L.; Hierman, J.S.; Rhodes, J.T.; Devereux, W.L.; Rudin, C.; Yung, R.; Parmigiani, G.; Dorsch, M.; Peacock, C.D.; et al. A Primary Xenograft Model of Small-Cell Lung Cancer Reveals Irreversible Changes in Gene Expression Imposed by Culture In vitro. Cancer Res. 2009, 69, 3364–3373. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, K.; Kawauchi, S.; Saito, S.; Furuya, T.; Ikemoto, K.; Nakao, M.; Yamamoto, S.; Oka, M.; Hirano, T.; Sasaki, K. Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: Comparison of the CGH profiles between cancer cell lines and primary cancer tissues. BMC Cancer 2010, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [Green Version]
- Ruppen, J.; Wildhaber, F.D.; Strub, C.; Hall, S.R.R.; Schmid, R.A.; Geiser, T.; Guenat, O.T. Towards personalized medicine: Chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip 2015, 15, 3076–3085. [Google Scholar] [CrossRef] [Green Version]
- Ooft, S.N.; Weeber, F.; Dijkstra, K.K.; McLean, C.M.; Kaing, S.; van Werkhoven, E.; Schipper, L.; Hoes, L.; Vis, D.J.; van de Haar, J.; et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 2019, 11, eaay2574. [Google Scholar] [CrossRef]
- MacDonagh, L.; Gray, S.; Breen, E.; Cuffe, S.; Finn, S.; O’Byrne, K.J.; Barr, M.P. Lung cancer stem cells: The root of resistance. Cancer Lett. 2016, 372, 147–156. [Google Scholar] [CrossRef]
- Greaves, M. Evolutionary Determinants of Cancer. Cancer Discov. 2015, 5, 806–820. [Google Scholar] [CrossRef] [Green Version]
Author | Year | Medium | Supplements | ECM | Method | Success Rate | n (Establ.) | Validation | Downstream Applications Tested |
---|---|---|---|---|---|---|---|---|---|
Endo et al. [10] | 2013 | StemPro hESC medium or DMEM/F12, Bovine serum albumin and Neuregulin 1 | n/a | Matrigel (GFR) | Neuregulin 1 | 80% | 100 | Histology and IHC Flow cytometry | Response to erlotinib |
Sachs et al. [11] | 2019 | Advanced DMEM/F12 | R-Spondin 1 FGF7, FGF10, Noggin A83-01 ROCK Inhibitor SB202190 B27 Nutlin-3a | Cultrex Basal Membrane Extract (GFR) | Nutlin-3a selection | 28% | 18 | Histology and IHC Whole-genome sequencing | Drug response including targeted therapy |
Kim et al. [12] | 2019 | DMEM/F12 | Basic FGF Human EGF ROCK Inhibitor N2 B27 | Matrigel (GFR) | Minimum basal medium | 87% | 20 | Histology and IHC SNP genotyping, targeted sequencing, whole-exome sequencing | Drug response including TKIs and PARP inhibitor Whole-organoid xenografts |
Herreros-Pomares et al. [13] | 2019 | Advanced DMEM/F12 | Basic FGF Human EGF Bovine serum albumin | n/a | Ultra low attachment plates | 40% | 8 | Microscopy | Cytotoxicity assays Whole-organoid xenografts Prognostic score for overall survival |
Shi et al. [14] | 2020 | Advanced DMEM/F12 | Human EGF FGF4, FGF10 Noggin A83-01 ROCK Inhibitor B27 CHIR99021 Smoothened Ligand (SAG) | Matrigel (GFR) | M26 medium | 88% organoid establishment 15% non-contaminated long-term culture | 47 (short-term) 10 (long-term) | Histology and IHC Whole-exome sequencing and CNV analysis RNA-seq | Targeted therapy response including combination treatments Whole-organoid xenografts |
Li et al. [15] | 2020 | Advanced DMEM/F12 | R-Spondin 1 FGF7, FGF10, Noggin A83-01 ROCK Inhibitor SB202190 B27 | Matrigel (GFR) | no selection | n/a | 12 | Histology and IHC Whole-exome sequencing RNA-seq | High-throughput drug dose–response screens |
Dijkstra et al. [16] | 2020 | Advanced DMEM/F12 | R-Spondin 1 FGF7, FGF10, Noggin A83-01 ROCK Inhibitor SB202190 B27 Nutlin-3a | Geltrex Basement Membrane (GFR) | no selection | 17% | 10 | Histology and IHC Copy number profiling | n/a |
Hu et al. [17] | 2021 | DMEM/F12 | Human EGF ROCK Inhibitor N2 B27 SB202190 A83-01 Forskolin | Matrigel (GFR) | Minimum medium | 79% | 77 | Histology and IHC Whole-exome sequencing RNA-seq | Early-passage drug response profiling on microwell arrays |
Yokota et al. [18] | 2021 | Advanced DMEM/F12 | R-Spondin 1 FGF7, FGF10, Noggin A83-01 ROCK Inhibitor SB202190 B27 Nutlin-3a | Cultrex Basal Membrane Extract (GFR) | Nutlin-3a selection | 7% | 3 | Histology and IHC Sanger Sequencing Karyotyoing | Drug response including targeted therapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werner, R.S.; Kirschner, M.B.; Opitz, I. Primary Lung Cancer Organoids for Personalized Medicine—Are They Ready for Clinical Use? Cancers 2021, 13, 4832. https://doi.org/10.3390/cancers13194832
Werner RS, Kirschner MB, Opitz I. Primary Lung Cancer Organoids for Personalized Medicine—Are They Ready for Clinical Use? Cancers. 2021; 13(19):4832. https://doi.org/10.3390/cancers13194832
Chicago/Turabian StyleWerner, Raphael S., Michaela B. Kirschner, and Isabelle Opitz. 2021. "Primary Lung Cancer Organoids for Personalized Medicine—Are They Ready for Clinical Use?" Cancers 13, no. 19: 4832. https://doi.org/10.3390/cancers13194832
APA StyleWerner, R. S., Kirschner, M. B., & Opitz, I. (2021). Primary Lung Cancer Organoids for Personalized Medicine—Are They Ready for Clinical Use? Cancers, 13(19), 4832. https://doi.org/10.3390/cancers13194832