Steffensen-Type Inequalities with Weighted Function via (γ, a)-Nabla-Conformable Integral on Time Scales
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- (iv)
- (v)
2. Main Results
3. ∇-Conformable Dynamic Steffensen’s Inequality
4. Further ∇-Conformable Dynamic Steffensen’s Inequality
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Ein makettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universtat Wurzburg, Wurzburg, Germany, 1988. [Google Scholar]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Agarwal, R.; Bohner, M.; Peterson, A. Inequalities on time scales: A survey. Math. Inequal. Appl. 2001, 4, 535–557. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Saker, S.H.; El-Deeb, A.A.; Rezk, H.M.; Agarwal, R.P. On Hilbert’s inequality on time scales. Appl. Anal. Discret. Math. 2017, 11, 399–423. [Google Scholar] [CrossRef]
- Tian, Y.; El-Deeb, A.A.; Meng, F. Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales. Discret. Dyn. Nat. Soc. 2018, 8, 5841985. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 2010, 59, 3750–3762. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A. Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 2010, 52, 556–566. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Integral operator inequalities on time scales. Int. J. Differ. Equ. 2012, 7, 111–137. [Google Scholar]
- Sahir, M. Dynamic inequalities for convex functions harmonized on time scales. J. App. Math. Phys. 2017, 5, 2360–2370. [Google Scholar] [CrossRef] [Green Version]
- Pećarixcx, J.; Kalamir, K.S. Generalized Steffensen type inequalities involving convex functions. J. Funct. Spaces 2014, 10, 428030. [Google Scholar]
- Anderson, D.R. Time-scale integral inequalities. JIPAM J. Inequal. Pure Appl. Math. 2005, 6, 66. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Daftardar-Gejji, V.; Jafari, H. Analysis of a system of nonautonomous fractional differential equations involving caputo derivatives. J. Math. Anal. Appl. 2007, 328, 1026–1033. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Nwaeze, E.R. Some new results on the new conformable fractional calculus with application using d’alambert approach. Progr. Fract. Differ. Appl. 2016, 2, 115–122. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Ojo, G.O. On the analytical solution of fornberg-whitham equation with the new fractional derivative. Pramana 2015, 85, 567–575. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Tasbozan, O.; Kurt, A.; Çenesiz, Y. On the analytical solutions of the system of conformable time-fractional robertson equations with 1-d diffusion. Chaos Solitons Fractals 2017, 94, 1–7. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Benkhettou, N.; Hassani, S.; Torres, D.F. A conformable fractional calculus on arbitrary time scales. J. King Saud-Univ.-Sci. 2016, 28, 93–98. [Google Scholar] [CrossRef]
- Ammari, K.; Hassine, F.; Robbiano, L. Stabilization of fractional-evolution systems. arXiv 2019, arXiv:1902.02558. [Google Scholar] [CrossRef]
- Nwaeze, E.R. A mean value theorem for the conformable fractional calculus on arbitrary time scales. Progr. Fract. Differ. Appl. 2016, 2, 287–291. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Torres, D.F.M. Chain rules and inequalities for the bht fractional calculus on arbitrary timescales. Arab. J. Math. 2017, 6, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser Boston, Inc.: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. (Eds.) Advances in Dynamic Equations on Time Scales; Birkhäuser Boston, Inc.: Boston, MA, USA, 2003. [Google Scholar]
- El-Deeb, A.A.; Abdeldaim, A.; Khan, Z.A. On some gen- eralizations of dynamic Opial-type inequalities on time scales. Adv. Differ. Equ. 2019, 2019, 323. [Google Scholar]
- El-Deeb, A.A.-M.; Bazighifan, O.; Awrejcewicz, J. A Variety of Dynamic Steffensen-Type Inequalities on a General Time Scale. Symmetry 2021, 13, 1738. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Makharesh, S.D.; Baleanu, D. Dynamic Hilbert-Type Inequalities with Fenchel-Legendre Transform. Symmetry 2020, 12, 582. [Google Scholar] [CrossRef] [Green Version]
- El-Deeb, A.A.; Bazighifan, O.; Awrejcewicz, J. On Some New Weighted Steffensen-Type Inequalities on Time Scales. Mathematics 2021, 9, 2670. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Baleanu, D. New Weighted Opial-Type Inequalities on Time Scales for Convex Functions. Symmetry 2020, 12, 842. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.T. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Tarasov, V. No Violation of the Leibniz Rule. No Fractional Derivative. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2945–2948. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V. Local Fractional Derivatives of Differentiable Functions are Integer-order Derivatives or Zero. Int. J. Appl. Comput. Math. 2016, 2, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 157–163, Erratum in Math. Comput. Appl. 2021, 26, 66. [Google Scholar] [CrossRef] [Green Version]
- Abdelhakim, A.A. The flaw in the conformable calculus: It is conformable because it is not fractional. Fract. Calc. Appl. Anal. 2019, 22, 242–254. [Google Scholar] [CrossRef]
- Kiskinov, H.; Petkova, M.; Zahariev, A. Remarks about the existence of conformable derivatives and some consequences. arXiv 2019, arXiv:1907.03486. [Google Scholar]
- Bendouma, B.; Hammoudi, A. A nabla conformable fractional calculus on time scales. Electron. J. Math. Appl. 2019, 7, 202–216. [Google Scholar]
- Rahmat, M.R.S.; Noorani, M.S.M. A new conformable nabla derivative and its application on arbitrary time scales. Adv. Differ. Equ. 2021, 2021, 238. [Google Scholar]
- Zakaryaed, M.; Altanji, M.; AlNemer, G.H.; El-Hamid, A.; Hoda, A.; Cesarano, C.; Rezk, H.M. Fractional reverse coposn’s inequalities via conformable calculus on time scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
- Saker, S.H.; Kenawy, M.; AlNemer, G.H.; Zakarya, M. Some fractional dynamic inequalities of hardy’s type via conformable calculus. Mathematics 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Khan, M.A.; Ali, T.; Dragomir, S.S. Inequalities for α-fractional differentiable functions. J. Inequalities Appl. 2017, 2017, 93. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for conformable fractional integrals. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. Matemáticas 2018, 112, 1033–1048. [Google Scholar] [CrossRef]
- Set, E.; Gözpnar, A.; Ekinci, A. Hermite-Hadamard type inequalities via confortable fractional integrals. Acta Math. Univ. Comen. 2017, 86, 309–320. [Google Scholar]
- Sarikaya, M.Z.A.; Billisik, C.C. Opial type inequalities for conformable fractional integrals via convexity. Chaos Solitons Fractals 2016, 97, 1–7. [Google Scholar]
- Sarikaya, M.; Budak, H. New inequalities of opial type for conformable fractional integrals. Turk. J. Math. 2017, 41, 1164–1173. [Google Scholar] [CrossRef]
- Sarikaya, M.; Yaldiz, H.; Budak, H. Steffensen’s integral inequality for conformable fractional integrals. Int. J. Anal. Appl. 2017, 15, 23–30. [Google Scholar]
- Anderson, D.R. Taylor’s formula and integral inequalities for conformable fractional derivatives. In Contributions in Mathematics and Engineering; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Ozkan, U.M.; Yildirim, H. Steffensen’s integral inequality on time scales. J. Inequal. Appl. 2007, 10, 46524. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, A.A.; Awrejcewicz, J. Steffensen-Type Inequalities with Weighted Function via (γ, a)-Nabla-Conformable Integral on Time Scales. Mathematics 2021, 9, 3046. https://doi.org/10.3390/math9233046
El-Deeb AA, Awrejcewicz J. Steffensen-Type Inequalities with Weighted Function via (γ, a)-Nabla-Conformable Integral on Time Scales. Mathematics. 2021; 9(23):3046. https://doi.org/10.3390/math9233046
Chicago/Turabian StyleEl-Deeb, Ahmed A., and Jan Awrejcewicz. 2021. "Steffensen-Type Inequalities with Weighted Function via (γ, a)-Nabla-Conformable Integral on Time Scales" Mathematics 9, no. 23: 3046. https://doi.org/10.3390/math9233046
APA StyleEl-Deeb, A. A., & Awrejcewicz, J. (2021). Steffensen-Type Inequalities with Weighted Function via (γ, a)-Nabla-Conformable Integral on Time Scales. Mathematics, 9(23), 3046. https://doi.org/10.3390/math9233046