Phytochemical Contents and Antioxidant Capacities of Two Aloe greatheadii var. davyana Extracts
Abstract
:Introduction
Results and Discussion
Compounds | Concentration (ppm) | Compounds | Concentration (ppm) | ||||
---|---|---|---|---|---|---|---|
LGE | ELGE(per dry mass LGE) | ELGE(per dry massELGE) | LGE | ELGE(per dry mass LGE) | ELGE(per dry mass ELGE) | ||
Organic acids | Alcohols | ||||||
Isovaleric | 119 | 71.7 | 2.60 x 103 | 1-Propanol | 83.9 | - | - |
Pentanoic | 491 | 40.0 | 1.5 0x 103 | 2,3-Butanol | 262 | - | - |
Lactic | 2786 | 111 | 4.10 x 103 | 2-Methyl-1,3-propanediol | 293 | - | - |
2-Hydroxyacetic | 68.5 | - | - | Phenylethanol | 51.5 | - | - |
Pyruvic | 23.1 | 2.56 | - | Benzyl alcohol | 56.3 | 133 | 4.90 x 103 |
Furancarboxylic | 30.3 | - | - | 2,3-Pentanediol | 7.46 | - | - |
Oxalic | 0.88 | - | - | Glycerol | 1.20 | - | - |
3-Hydroxypropanoic | 0.99 | - | - | Octadecanol | 11.9 | - | - |
2-Hydroxyvaleric | 83.6 | 43.7 | 1.60 x 103 | Phytol | 20.1 | - | - |
Cyclohexane-3-carboxylic | 0.87 | - | - | 2-Methyl-1,3-butanol | - | 20.6 | 7.60 x 102 |
3-Hydroxyisovaleric | 110 | - | - | Hexanol | 23.3 | - | - |
2-Ketoisovaleric | 1.20 | 39.9 | 1.50 x 103 | Butanol | 6.45 | - | - |
Succinic | 415 | 989 | 3.70 x 104 | ||||
2-Methylsuccinic | 61.8 | 75.1 | 2.80 x 103 | Aldehydes | |||
Methylmalic | 10.4 | - | - | Benzaldehyde | 35.3 | 156 | 5.80 x 103 |
Malic | 25.4 | 126 | 4.70 x 103 | m-Tolualdehyde | 11.7 | - | - |
Threonic | 1.43 | - | - | p-Tolualdehyde | - | 45.9 | 1.70 x 103 |
3,4,5-Trihydroxypentanoic | 2.05 | - | - | 2,3-Dihydroxybenzaldehyde | 0.24 | - | - |
2,3,4,5-Tetrahydroxypentanoic | - | 27.9 | 1.00 x 103 | Glyceraldehyde | 32.2 | - | - |
Suberic | 6.37 | - | - | ||||
3-Hydroxypicolinic | 34.9 | - | - | Ketones | |||
Isonicotinic | 27.6 | - | - | 2,6-Dimethyl-4-heptanone | 153 | - | - |
2-Ketoglutaric | - | 25.5 | 9.40 x 102 | 4,6-Dimethyl-2-heptanone | 34.5 | - | - |
Glycolic | - | 132 | 4.90 x 103 | Heptanone | - | 8.51 | 3.4 x 102 |
3-Hydroxypropionic | - | 2.31 | 8.50 x 101 | ||||
Methylbenzyl acetate | - | 16.7 | 6.20 x 102 | Pyrimidines | |||
Acetic | - | 29.2 | 1.10 x 103 | Uracil | 554 | 919 | 3.40 x 104 |
Phosphoric | - | 233 | 8.60 x 103 | Thymine | 428 | 187 | 6.90 x 103 |
Hydantoinpropionic | - | 17.5 | 6.50 x 102 | ||||
2-Butoxyethylacetate | - | 57.6 | 2.10 x 103 | Indoles | |||
Citric | - | 5.94 | 2.20 x 102 | Indole-5-acetic | 9.19 | - | - |
2-Hydroxyglutaric | - | 24.8 | 9.20 x 102 | Hexahydrobenzoindole | - | 11.4 | 4.20 x 102 |
Tartaric | - | 9.69 | 3.60 x 102 | ||||
3-Methylvaleric | - | 58.6 | 2.20 x 103 | Alkaloids | |||
Hypoxanthine | 33.1 | - | - | ||||
Polyphenols / Phenolic compounds | |||||||
Phenol | 11.8 | 46.0 | 1.70 x 103 | Phytosterols | |||
4-Ethylphenol | 5.85 | - | - | Cholestanol | 17.7 | - | - |
Vanillic | 60.7 | 25.7 | 9.50 x 102 | Campesterol | 119 | - | - |
Homovanillic | 23.4 | - | - | β-sitosterol | 99.6 | - | - |
Gentisic | 55.6 | - | - | Stigmasterol | 15.8 | - | - |
6,7-Dihydroxycoumaric | 31.3 | - | - | ||||
o-Hydroxycinnamic | 51.3 | - | - | Fatty acids | |||
Protocatechuic | 162 | 42.7 | 1.60 x 103 | Lauric (C12:0) | 0.35 | - | - |
3,4-Dihydroxyphenylacetic | 2.76 | - | - | Tridecanoic (C13:0) | 0.02 | - | - |
Syringic | 14.4 | - | - | Sebacic (C10:0) | 0.01 | - | - |
Sinapic | 37.8 | - | - | Myristic (C14:0) | 2.86 | - | - |
Caffeic | 107 | - | - | Undecanoic (C11:0) | 0.03 | - | - |
Isoferulic | 38.4 | - | - | Pentadecanoic (15:0) | 1.16 | - | - |
Ferulic | 60.1 | - | - | Palmitic (C16:0) | 43.0 | 1.49 | 5.50 x 101 |
Benzoic | 420 | 3136 | 1.20 x 105 | Stearic (C18:0) | 3.24 | - | - |
Phenylacetic | 71.3 | 283 | 1.00 x 104 | Nonadecanoic (C19:0) | 3.14 | - | - |
2-Methoxybenzoic | 233 | - | - | Heneicosanoic (C21:0) | 0.28 | - | - |
o-Toluic | 162 | - | - | Behenic (C22:0) | 5.39 | - | - |
Phenylpropionic | 37.5 | 20.3 | 7.50 x 102 | Tricosanoic (C23:0) | 1.74 | - | - |
4-Phenyllactic | 613 | 86.8 | 3.20 x 103 | Lignoceric (C24:0) | 5.11 | - | - |
4-Hydroxybenzoic | 223 | 56.1 | 2.10 x 103 | Arachidonic (C20:4) | 0.57 | - | - |
2,3-Hydroxybenzoic | 12.1 | - | - | Myristoleic (C14:1) | 0.20 | - | - |
4-Hydroxyphenylacetic | 378 | 45.7 | 1.70 x 103 | 10-Pentadecenoic (C15:1) | 1.44 | - | - |
Hydro-p-coumaric | 13.9 | - | - | Palmitoleic (C16:1) | 4.00 | - | - |
p-Coumaric | 113 | - | - | Linoleic (C18:2 n-6) | 570 | - | - |
3-Hydroxyphenylbutyric | - | 13.8 | 5.10 x 102 | 10-Heptadecenoic (C17:1) | 0.48 | - | - |
4-Hydroxymandelic | - | 110 | 4.10 x 103 | Oleic (C18:1) | 30.1 | - | - |
Benzylacetate | - | 64.6 | 2.40 x 103 | ||||
2-Hydroxybutyric | - | 0.76 | 2.70 x 101 | Dicarboxylic acids | |||
Phenylpyruvic | - | 9.41 | 3.40 x 102 | Azelaic | 0.04 | - | - |
1,2-Benzenedicarboxylic | - | 29.5 | 1.10 x 103 | ||||
Alkanes | |||||||
1,3-Dihydroxybutane | 8.51 | - | - |
Compound | LGE(dry mass) | LGE(wet mass) | ELGE(expressed as dry mass ELGE) | ELGE(expressed as dry mass LGE) | ELGE(expressed as wet mass LGE) |
---|---|---|---|---|---|
Total polyphenols (mg of GAE/100g ± SD) | 45.1 ± 0.94 | 1.20 ± 0.03 | 263 ± 6.51 | 30.9 ± 0.77 | 0.82 ± 0.02 |
Total flavonoids (mg of CE/100g ± SD) | 7.66 ± 0.26 | 0.20 ± 0.01 | 20.2 ± 0.50 | 2.37 ± 0.06 | 0.06 ± 0.001 |
Total non-flavonoids (by calculation) | 37.8 ± 0.99 | 0.99 ± 0.03 | 243 ± 6.96 | 28.6 ± 0.82 | 0.75 ± 0.02 |
ORAC – hydrophyllic (μmol of TE/g) | 59.0 ± 1.16 | 2.05 ± 0.4 | 83.0 ± 1.32 | 5.42 ± 1.21 | 0.19 ± 0.04 |
ORAC – lipophyllic (μmol of TE/g) | - | - | - | - | - |
ORAC – total (μmol of TE/g) | 59.0 ± 1.16 | 2.05 ± 0.4 | 83.0 ± 1.32 | 5.42 ± 1.21 | 0.19 ± 0.04 |
FRAP (μmol/g) | 2.63 ± 0.21 | 0.09 ± 0.01 | 8.98 ± 0.21 | 0.58 ± 0.01 | 0.02 ± 0.001 |
Conclusions
Experimental
General
Plant material
Sample preparation
Ethyl acetate/diethylether extraction
Hexane Extraction for Fatty Acids
Phytochemical Characterization via GC-MS
Total Polyphenols
Total flavonoids
Oxygen Radical Absorbance Capacity (ORAC)
Ferric Reducing Antioxidant Power (FRAP)
Sugar content
References
- Cunningham, A.B. African medical plants: setting priorities at the interface between conservation and primary healthcare. People and plants working paper 1; UNESCO: Paris, 1993. Available online: http://nsdl.loncapa.org/res/msu/botonl/b_online/library/peopleplants/wp/wp1/intro.htm Date of access: 28 Feb. 2007.
- Thring, T.S.A.; Weitz, F.M. Medicinal plant use in the Bredasdorp/Elim region of the Southern Overberg in the Western Cape Province of South Africa. J. Ethnopharmacol. 2006, 103, 261–275. [Google Scholar] [CrossRef]
- Morton, J.F. Folk uses and commercial exploitation of aloe leaf pulp. Econ. Botany 1961, 311–319. [Google Scholar] [CrossRef]
- Crosswhite, F.S.; Crosswhite, C.D. Aloe vera, plant symbolism and the threshing floor. Desert Plants 1984, 6, 43–50. [Google Scholar]
- Reynolds, T.; Dweck, A.C. Aloe vera leaf gel: a review update. J. Ethnopharmacol. 1999, 68, 3–37. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Sivagnaman, K.; Subramanian, S. Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin. J. Pharm. Pharmacol. 2005, 57, 241–246. [Google Scholar] [CrossRef]
- Loots, Du T.; Van der Westhuizen, F.H.; Botes, L. Aloe ferox leaf gel phytochemical content, antioxidant capacity and possible health benefits. J. Agric. Food. Chem. 2007, 55, 6891–6896. [Google Scholar] [CrossRef]
- Willcox, J.K.; Ash, S.L.; Catignami, G.L. Antioxidants and the prevention of chronic disease. Crit. Rev. Food. Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free. Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Herraiz, T.; Galisteo, J. Endogenous and Dietary Indoles: A Class of Antioxidants and Radical Scavengers in the ABTS Assay. Free. Radic. Res. 2004, 38, 323–331. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Re´Me´ Sy, C. Dietary polyphenols and the prevention of disease. Crit. Rev. Food. Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Agarwal, PO. Prevention of atheromatous heart disease. Angiology 1985, 36, 485–492. [Google Scholar] [CrossRef]
- Beppu, H.T.; Koike, K.; Shimpo, T.; Chihara, M.; Hoshino, C.I.; Kuzuya, H. Radical-scavenging effects of Aoe arborescens Miller on prevention of pancreatic islet β-cell destruction in rats. J. Ethnoparmacol. 2003, 89, 37–45. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Sivagnaman, K.; Subramanian, S. Antioxidant effect of Aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacol. Rep. 2005, 57, 90–96. [Google Scholar]
- Cao, H.; Hininger-Favier, I.; Kelly, M.A.; Benaraba, R.; Dawson, H.D.; Coves, S.; Roussel, A.M.; Anderson, R.A. Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signalling in rats fed a high fructose diet. J. Agric. Food. Chem. 2007, 55, 6372–6378. [Google Scholar] [CrossRef]
- Johnston, K.; Sharp, P.; Clifford, M.; Morgan, L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. Fed. Eur. Biochem. Soc. Lett. 2005, 579, 1653–7. [Google Scholar] [CrossRef]
- Tanaka, M.; Misawa, E.; Ito, Y.; Habara, N.; Nomaguchi, K.; Yamada, M.; Toida, T.; Hayasawa, H.; Takase, M.; Inagaki, M.; Higuchi, R. Identification of five phytosterols from aloe vera gel as anti-diabetic compounds. Biol. Pharm. Bull. 2006, 29, 1418–1422. [Google Scholar] [CrossRef]
- Patch, C.S.; Tapsell, L.C.; Williams, P.G.; Gordon, M. Plant sterols as dietary adjuvants in the reduction of cardiovascular risk: theory and evidence. Vasc. Health. Risk. Manag. 2006, 2, 157–162. [Google Scholar] [CrossRef]
- Devaraj, S.; Jialal, I. The role of dietary supplementation with plant sterols and stanols in the prevention of cardiovascular disease. Nutr. Rev. 2006, 64, 348–354. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Deckelbaum, R.; AHA Science Advisory. Stanol/sterol ester-containing foods and blood cholesterol levels. A statement for healthcare professionals from the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation 2001, 103, 177–1179. [Google Scholar]
- Normen, L.; Dutta, P.; Lia, A.; Andersson, H. Soy sterol esters and beta-sitostanol ester as inhibitors of cholesterol absorption in human small bowel. Am. J. Clin. Nutr. 2000, 71, 908–913. [Google Scholar]
- Jones, P.J.; Ntanios, F.Y.; Raeini-Sarjaz, M.; Vanstone, C.A. Cholesterol-lowering efficacy of a sitostanol-containing phytosterol mixture with a prudent diet in hyperlipidemic men. Am. Clin. Nutr. 1999, 69, 1144–1150. [Google Scholar]
- McAnuff, M.A.; Harding, W.W.; Omoruyi, F.O.; Jacobs, H.; Morrison, E.Y.; Asemota, H.N. Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food. Chem. Toxicol. 2005, 43, 1667–1672. [Google Scholar] [CrossRef]
- Bradford, P.G.; Awad, A.B. Phytosterols as anticancer compounds. Mol. Nutr. Food. Res. 2007, 51, 161–170. [Google Scholar] [CrossRef]
- Nielsen, J.V.; Jönsson, E.A. Low-carbohydrate diet in type 2 diabetes. Stable improvement of body weight and glycaemic control during 22 months follow-up. Nutr. Metab. (Lond). 2006, 3:22, 1–5. [Google Scholar]
- American Diabetes Association. Nutrition recommendations and interventions for diabetes. Diabet. Care 2007, 30 (Suppl 1), S48–S65. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphostungastic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Marinova, D.; Robarova, F.; Atanassova, M. Total phenolics and total flavonoids in bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.M.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (ORAC(FL)) of plasma and other biological and food samples. J. Agric. Food. Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsc-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Development and validation of oxygen radical absorbance capacity assays for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J. Agric. Food. Chem. 2002, 27, 1815–1821. [Google Scholar]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Stevens, J.W.; Baier, W.E. Corrections for obtaining soluble solids from refractometer readings (soluble solids as sucrose). Ind. & Eng. Chem. Anal. Ed. 11. 1939, 447–449. [Google Scholar]
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Botes, L.; Van der Westhuizen, F.H.; Loots, D.T. Phytochemical Contents and Antioxidant Capacities of Two Aloe greatheadii var. davyana Extracts. Molecules 2008, 13, 2169-2180. https://doi.org/10.3390/molecules13092169
Botes L, Van der Westhuizen FH, Loots DT. Phytochemical Contents and Antioxidant Capacities of Two Aloe greatheadii var. davyana Extracts. Molecules. 2008; 13(9):2169-2180. https://doi.org/10.3390/molecules13092169
Chicago/Turabian StyleBotes, Lisa, Francois H. Van der Westhuizen, and Du Toit Loots. 2008. "Phytochemical Contents and Antioxidant Capacities of Two Aloe greatheadii var. davyana Extracts" Molecules 13, no. 9: 2169-2180. https://doi.org/10.3390/molecules13092169
APA StyleBotes, L., Van der Westhuizen, F. H., & Loots, D. T. (2008). Phytochemical Contents and Antioxidant Capacities of Two Aloe greatheadii var. davyana Extracts. Molecules, 13(9), 2169-2180. https://doi.org/10.3390/molecules13092169