Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (658)

Search Parameters:
Keywords = phytosterols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1863 KB  
Article
Analog Rice Based on Sago and Corn with the Addition of Moringa Leaf (Moringa oleifera L.) Powder as a Nutritional Vehicle for Breastfeeding Women
by Meta Mahendradatta, Tri Ela Rombe, Andi Nur Faidah Rahman, Jumriah Langkong, Abu Bakar Tawali and Dwi Ghina Nadhifa
Foods 2025, 14(16), 2780; https://doi.org/10.3390/foods14162780 - 10 Aug 2025
Viewed by 451
Abstract
Breastfeeding women require specific nutrition to support the quality and secretion of breast milk, which can be achieved through the development of analog rice. Several potential alternatives to develop analog rice, including sago and corn flour, can be developed with the addition of [...] Read more.
Breastfeeding women require specific nutrition to support the quality and secretion of breast milk, which can be achieved through the development of analog rice. Several potential alternatives to develop analog rice, including sago and corn flour, can be developed with the addition of moringa leaf powder due to its high nutritional composition and bioactive compounds, particularly high protein, iron, phytosterols, and flavonoids, which are suitable for breastfeeding women. However, as a new product, besides considering its nutritional value, developing the preferred and acceptable formulation of analog rice remains challenging. This research aims to gain the best formulation and investigate the physicochemical and sensory properties. Three formulations of analog rice were applied in this study utilizing extrusion technology, comprising sago, corn flour, and moringa leaf powder in ratio variations as follows: A, 60:37:3; B, 70:25:5; C, 80:10:10. Overall, the analog rice produced had a green color, a sticky texture, a distinct moringa aroma, and a slightly bitter taste, with Formulation C being most preferred (overall organoleptic value of 2.5, categorized as neutral), containing 6.22 ± 0.83% moisture, 1.04 ± 0.07% ash, 4.08 ± 0.17% protein, 0.46 ± 0.09% fat, 88.21 ± 0.59% carbohydrate, 3.42 ± 1.54% crude fiber, 382.62 ± 3.75 Kcal, 40.12 ± 13.38 ppm iron, 1.09 ± 0.05% sitosterol, 1.16 ± 0.03% stigmasterol, and 0.19 ± 0.07% flavonoid levels. The analog rice provides high energy and lactation-supporting bioactive compounds (iron, phytosterols, and flavonoids), demonstrating potential as a sustainable dietary intervention. This study offers a novel approach through the development of extruded analog rice, which transforms local ingredients into a functional food targeting maternal nutritional gaps by synergizing sago, corn flour, and moringa leaf powder. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

14 pages, 622 KB  
Article
Effects of Novel Nutraceutical Combination on Lipid Pattern of Subjects with Sub-Optimal Blood Cholesterol Levels
by Nicola Vitulano, Pietro Guida, Vito Abrusci, Edmondo Ceci, Edy Valentina De Nicolò, Stefano Martinotti, Nicola Duni, Federica Troisi, Federico Quadrini, Antonio di Monaco, Massimo Iacoviello, Andrea Passantino and Massimo Grimaldi
Biomedicines 2025, 13(8), 1948; https://doi.org/10.3390/biomedicines13081948 - 9 Aug 2025
Viewed by 582
Abstract
Background/Objectives: High concentration of plasma low-density lipoprotein cholesterol (LDL-C) is the predominant cause of atherosclerotic cardiovascular disease progression and coronary heart disease. Nutraceutical combination together with a cholesterol-lowering action provides an alternative to pharmacotherapy in patients reporting intolerance to statins and in [...] Read more.
Background/Objectives: High concentration of plasma low-density lipoprotein cholesterol (LDL-C) is the predominant cause of atherosclerotic cardiovascular disease progression and coronary heart disease. Nutraceutical combination together with a cholesterol-lowering action provides an alternative to pharmacotherapy in patients reporting intolerance to statins and in subjects with low cardiovascular risk. The effects on lipid parameters were evaluated over 6 months for a food supplement containing aqueous extract of Berberis aristata and Olea europea, fenugreek seed extract, water/ethanol extract of artichoke leaf and phytosterols from sunflower seeds (Ritmon Colesystem®). Methods: Laboratory data were obtained at baseline from 44 otherwise healthy subjects (33 males, mean 50 ± 11 years) without cardiovascular disease having LDL-C in the range 115 to 190 mg/dL pharmacologically untreated for hypercholesterolemia. Subjects were re-evaluated at 1, 3 and 6 months during which they took one tablet of Ritmon Colesystem® after dinner. Results: At baseline, the mean values were 151 ± 21 mg/dL for LDL-C, 223 ± 24 mg/dL for total cholesterol (T-C), 52 ± 14 mg/dL for high-density lipoprotein cholesterol (HDL-C), and 124 ± 58 mg/dL for triglycerides. A significant reduction in LDL-C was observed; 9 mg/dL (95% confidence interval 3–14), 10 (4–17) and 7 (1–14) at 1, 3 and 6 months. A similar significant trend was detected for T-C while triglycerides did not show significant changes and HDL-C had lower values only at 3 months. Conclusions: These nutraceuticals in individuals with sub-optimal blood cholesterol levels at intermediate–low cardiovascular risk reduced LDL-C and T-C over 6 months contributing to the improvement of cholesterol control by dietary supplements. Full article
Show Figures

Figure 1

52 pages, 7563 KB  
Article
Design and Evaluation of a Inonotus obliquus–AgNP–Maltodextrin Delivery System: Antioxidant, Antimicrobial, Acetylcholinesterase Inhibitory and Cytotoxic Potential
by Ana-Maria Stanoiu, Cornelia Bejenaru, Adina-Elena Segneanu, Gabriela Vlase, Ionela Amalia Bradu, Titus Vlase, George Dan Mogoşanu, Maria Viorica Ciocîlteu, Andrei Biţă, Roxana Kostici, Dumitru-Daniel Herea and Ludovic Everard Bejenaru
Polymers 2025, 17(15), 2163; https://doi.org/10.3390/polym17152163 - 7 Aug 2025
Viewed by 597
Abstract
Inonotus obliquus, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of I. obliquus, introducing novel polymer-based encapsulation systems to enhance the stability and [...] Read more.
Inonotus obliquus, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of I. obliquus, introducing novel polymer-based encapsulation systems to enhance the stability and bioavailability of its bioactive constituents. Two distinct delivery systems were designed to enhance the functionality of I. obliquus extracts: (i) microencapsulation in maltodextrin (MIO) and (ii) a sequential approach involving preparation of silver nanoparticle-loaded I. obliquus (IO–AgNPs), followed by microencapsulation to yield the hybrid MIO–AgNP system. Comprehensive metabolite profiling using GC–MS and ESI–QTOF–MS revealed 142 bioactive constituents, including terpenoids, flavonoids, phenolic acids, amino acids, coumarins, styrylpyrones, fatty acids, and phytosterols. Structural integrity and successful encapsulation were confirmed by XRD, FTIR, and SEM analyses. Both IO–AgNPs and MIO–AgNPs demonstrated potent antioxidant activity, significant acetylcholinesterase inhibition, and robust antimicrobial effects against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli. Cytotoxicity assays revealed pronounced activity against MCF-7, HCT116, and HeLa cell lines, with MIO–AgNPs exhibiting superior efficacy. The synergistic integration of maltodextrin and AgNPs enhanced compound stability and bioactivity. As the first report on Romanian I. obliquus, this study highlights its therapeutic potential and establishes polymer-based nanoencapsulation as an effective strategy for optimizing its applications in combating microbial resistance and cancer. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

12 pages, 468 KB  
Article
Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis
by Olivio Fernandes Galãoa, Patrícia Valderrama, Luana Caroline de Figueiredo, Oscar Oliveira Santos Júnior, Alessandro Franscisco Martins, Rafael Block Samulewski, André Luiz Tessaro, Elton Guntendorfer Bonafé and Jesui Vergilio Visentainer
AppliedChem 2025, 5(3), 19; https://doi.org/10.3390/appliedchem5030019 - 7 Aug 2025
Viewed by 313
Abstract
Soybean (Glycine max (L.) Merrill) is a major oilseed crop rich in phytosterols and tocopherols, compounds associated with functional and nutritional properties of vegetable oils. This study aimed to apply, for the first time, Independent Component Analysis (ICA) to discriminate the composition [...] Read more.
Soybean (Glycine max (L.) Merrill) is a major oilseed crop rich in phytosterols and tocopherols, compounds associated with functional and nutritional properties of vegetable oils. This study aimed to apply, for the first time, Independent Component Analysis (ICA) to discriminate the composition of phytosterols (β-sitosterol, campesterol, stigmasterol) and tocopherols (α, β, γ, δ) in 20 soybean genotypes—14 non-transgenic and six transgenic—cultivated in two major producing regions of Paraná state, Brazil (Londrina and Ponta Grossa). Lipophilic compounds were extracted from soybean seeds, quantified via gas chromatography and HPLC, and statistically analyzed using ICA with the JADE algorithm. The extracted independent components successfully differentiated soybean varieties based on phytochemical profiles. Notably, transgenic cultivars from Ponta Grossa exhibited higher levels of total tocopherols, including α- and β-tocopherol, while conventional cultivars from both regions showed elevated phytosterol content, particularly campesterol and stigmasterol. ICA proved to be a powerful unsupervised method for visualizing patterns in complex compositional data. These findings highlight the significant influence of genotype and growing region on the nutraceutical potential of soybean, and support the use of multivariate analysis as a strategic tool for cultivar selection aimed at enhancing functional quality in food applications. Full article
Show Figures

Graphical abstract

22 pages, 775 KB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Cited by 1 | Viewed by 599
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

20 pages, 1722 KB  
Article
Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
by Daniela Zalazar-García, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia and María Paula Fabani
Horticulturae 2025, 11(8), 925; https://doi.org/10.3390/horticulturae11080925 - 5 Aug 2025
Viewed by 322
Abstract
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in [...] Read more.
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in the stomach. Pistachio consumption provides several health benefits, primarily due to its antioxidant properties and high content of essential nutrients. In this study, we analyzed the mineral composition, total phenolic content (TP), antioxidant activity (AA), and UHPLC/MS-MS polyphenolic profile of three Argentinian pistachio crops. Additionally, the physicochemical parameters and the elemental profiles of the growing soils were determined, as they influence mineral uptake and the synthesis of bioactive compounds in pistachio kernels. The TP was not significantly modified by the growing soils, with Crop3 presenting the highest TP content (276 ± 14 mg GA/100 g DW). Crop3 exhibited 18% higher TP content compared to Crop2. Similarly, FRAP values ranged from 28.0 to 36.5 mmol TE/100 g DW, with Crop1 showing a 30% increase compared to Crop2. DPPH values varied from 19.0 to 24.3 mmol TE/100 g DW, with Crop1 displaying 28% higher activity than Crop2. However, the polyphenolic profile was similar for all crops analyzed. Thirty compounds were identified; only Crop 1 contained the flavanone eriodyctiol and the isoflavone genistein, while the flavanone naringenin and the flavone luteolin were identified in Crop1 and Crop3. Regarding mineral content, the pistachio kernels mainly contained K, Ca, and Mg. Multivariate analyses revealed distinct elemental and antioxidant profiles among crops. LDA achieved classification accuracies of 77.7% for soils and 74.4% for kernels, with Pb, Zn, Cu, Rb, Sr, and Mn as key discriminants. CCA confirmed strong soil–kernel mineral correlations (r = 1), while GPA showed higher congruence between antioxidant traits and kernel composition than with soil geochemistry. These findings underscore the importance of soil composition in determining the nutritional quality of pistachio kernels, thereby supporting the beneficial health effects associated with pistachio consumption. Full article
Show Figures

Graphical abstract

15 pages, 277 KB  
Article
Metabolic Dysfunction-Associated Steatotic Liver Disease Is Characterized by Enhanced Endogenous Cholesterol Synthesis and Impaired Synthesis/Absorption Balance
by Irena Frankovic, Aleksandra Zeljkovic, Ivana Djuricic, Ana Ninic, Jelena Vekic, Minja Derikonjic, Sanja Erceg, Ratko Tomasevic, Milica Mamic, Milos Mitrovic and Tamara Gojkovic
Int. J. Mol. Sci. 2025, 26(15), 7462; https://doi.org/10.3390/ijms26157462 - 1 Aug 2025
Viewed by 344
Abstract
Cholesterol accumulation plays a significant role in the pathogenesis of metabolic-dysfunction-associated steatotic liver disease (MASLD), yet changes in cholesterol homeostasis in MASLD remain insufficiently investigated. This study aimed to examine alterations in cholesterol synthesis and absorption by measuring plasma levels of endogenous cholesterol [...] Read more.
Cholesterol accumulation plays a significant role in the pathogenesis of metabolic-dysfunction-associated steatotic liver disease (MASLD), yet changes in cholesterol homeostasis in MASLD remain insufficiently investigated. This study aimed to examine alterations in cholesterol synthesis and absorption by measuring plasma levels of endogenous cholesterol precursors (as markers of synthesis) and phytosterols (as indicators of absorption). A total of 124 MASLD patients and 43 healthy individuals were included. Our results showed higher plasma concentrations of lathosterol in the MASLD group (p = 0.006), in parallel with comparable concentrations of desmosterol (p = 0.472) and all analyzed phytosterols in both groups. Correlation analysis showed that both lathosterol and desmosterol were positively associated with non-invasive hepatic steatosis indices: FLI, HSI, and TyG index (p < 0.01, p < 0.01, and p < 0.05, respectively). Multivariate linear regression further confirmed that these synthesis markers remained significant predictors of FLI (p = 0.010), HSI (p = 0.013), and TyG index (p = 0.002), even after adjusting for other relevant variables. These findings indicate that MASLD is associated with a shift in cholesterol homeostasis towards enhanced endogenous cholesterol synthesis. Full article
(This article belongs to the Special Issue Molecular Research on Dyslipidemia)
31 pages, 2080 KB  
Review
Isatis tinctoria L.—From Botanical Description to Seed-Extracted Compounds and Their Applications: An Overview
by Justine Dupré, Nicolas Joly, Romain Vauquelin, Vincent Lequart, Élodie Choque, Nathalie Jullian and Patrick Martin
Plants 2025, 14(15), 2304; https://doi.org/10.3390/plants14152304 - 25 Jul 2025
Viewed by 658
Abstract
Isatis tinctoria L. (Brassicaceae), also known as woad or dyer’s woad, is an ancient plant with a rosy future ahead. Most of the knowledge about woad is related to indigo dye production and its medicinal applications, especially its leaves. The general interest in [...] Read more.
Isatis tinctoria L. (Brassicaceae), also known as woad or dyer’s woad, is an ancient plant with a rosy future ahead. Most of the knowledge about woad is related to indigo dye production and its medicinal applications, especially its leaves. The general interest in woad has decreased with the rise of petroleum-based products. However, nowadays this plant is attracting interest again with industries reintroducing natural dyes. To meet the market demand in a sustainable manner, recent studies have focused specifically on woad seeds, leading to a valorization of the whole woad plant. This review provides an overview of the botanical, phytochemical composition, and properties of woad seeds, primarily supporting their cosmetic and pharmaceutical potential. From a chemical point of view, woad seeds mainly contain fatty acids, amino acids, phytosterols and glucosinolates. These compounds have been investigated through their extraction and analytical methods, as well as their properties and industrial applications. Full article
(This article belongs to the Collection Bioactive Compounds in Plants)
Show Figures

Figure 1

17 pages, 1035 KB  
Review
Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
by Jude Juventus Aweya, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache and Mohammed H. Moghadasian
Foods 2025, 14(14), 2529; https://doi.org/10.3390/foods14142529 - 18 Jul 2025
Viewed by 1147
Abstract
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum [...] Read more.
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum of bioactive compounds such as phenolic acids, flavonoids, carotenoids, phytosterols, and betalains, these grains exhibit antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory properties. Their health-promoting effects are underpinned by multiple interconnected mechanisms, including the reduction in oxidative stress, modulation of inflammatory pathways, regulation of glucose and lipid metabolism, support for mitochondrial function, and enhancement of gut microbiota composition. This review provides a comprehensive synthesis of the essential nutrients, phytochemicals, and functional properties of ancient grains, with particular emphasis on the nutritional and molecular mechanisms through which they contribute to the prevention and management of chronic diseases such as cardiovascular disease, type 2 diabetes, obesity, and metabolic syndrome. Additionally, it highlights the growing application of ancient grains in functional foods and nutrition-sensitive dietary strategies, alongside the technological, agronomic, and consumer-related challenges limiting their broader adoption. Future research priorities include well-designed human clinical trials, standardization of compositional data, innovations in processing for nutrient retention, and sustainable cultivation to fully harness the health, environmental, and cultural benefits of ancient grains within global food systems. Full article
Show Figures

Figure 1

23 pages, 1809 KB  
Review
Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies
by Konstantinos Arvanitakis, Elena Chatzikalil, Christina Antza, Christos Topalidis, Georgios Kalopitas, Elena Solomou, Vasilios Kotsis, Georgios Germanidis, Theocharis Koufakis and Michael Doumas
Nutrients 2025, 17(14), 2357; https://doi.org/10.3390/nu17142357 - 18 Jul 2025
Viewed by 1897
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder marked by significantly elevated levels of low-density lipoprotein cholesterol (LDL-C) since childhood, substantially increasing the risk of premature atherosclerosis and cardiovascular disease. While dysfunction of hepatic LDL-C receptors is the main underlying cause, the gastrointestinal tract [...] Read more.
Familial hypercholesterolemia (FH) is a genetic disorder marked by significantly elevated levels of low-density lipoprotein cholesterol (LDL-C) since childhood, substantially increasing the risk of premature atherosclerosis and cardiovascular disease. While dysfunction of hepatic LDL-C receptors is the main underlying cause, the gastrointestinal tract plays a key role in cholesterol homeostasis and represents an important therapeutic target. Inhibition of intestinal cholesterol absorption has emerged as an effective strategy in the management of pediatric FH, particularly in patients for whom statins may not be the ideal first-line treatment. Ezetimibe, an inhibitor of the Niemann-Pick C1-like 1 (NPC1L1) protein, has been shown to reduce LDL-C levels in children with FH, with a greater efficacy observed when used in combination with statins. Bile acid sequestrants also enhance cholesterol excretion but are often limited by gastrointestinal side effects, while dietary interventions, such as phytosterol supplementation and fiber-enriched diets, provide additional benefits in lowering LDL-C and are generally well tolerated. Emerging therapies, including microbiota-targeted strategies and novel cholesterol absorption inhibitors, show promise for expanding future treatment options. This review explores the mechanisms of intestinal cholesterol absorption and their relevance to pediatric FH. We examine key pathways, including dietary cholesterol uptake through NPC1L1, bile acid reabsorption, and cholesterol efflux mediated by ATP-binding cassette transporters, while also discussing clinical and experimental evidence on pharmacological and dietary interventions that modulate these pathways. A deeper understanding of cholesterol metabolism, the emerging role of the gut microbiota, and innovative therapeutic agents can support the development of more effective and personalized approaches to the treatment of children with FH. Full article
Show Figures

Figure 1

14 pages, 1415 KB  
Review
Moringa oleifera Supplementation as a Natural Galactagogue: A Systematic Review on Its Role in Supporting Milk Volume and Prolactin Levels
by Mohammad Ammar, Giovanni Luca Russo, Almothana Altamimi, Mohammad Altamimi, Mohammed Sabbah, Asmaa Al-Asmar and Rossella Di Monaco
Foods 2025, 14(14), 2487; https://doi.org/10.3390/foods14142487 - 16 Jul 2025
Viewed by 1856
Abstract
Breast milk is the optimal nutrition for infants, yet lactation insufficiency remains a common cause of early breastfeeding cessation. Moringa oleifera has been traditionally used as a galactagogue due to its rich micronutrient and phytosterol content. This systematic review assessed the effects of [...] Read more.
Breast milk is the optimal nutrition for infants, yet lactation insufficiency remains a common cause of early breastfeeding cessation. Moringa oleifera has been traditionally used as a galactagogue due to its rich micronutrient and phytosterol content. This systematic review assessed the effects of Moringa leaf supplementation on prolactin levels and breast milk volume in postpartum mothers with lactation insufficiency. A systematic search following PRISMA guidelines, was conducted for randomized controlled trials involving healthy postpartum women supplemented with Moringa oleifera. Risk of bias was evaluated using the Cochrane Risk of Bias Tool. Eight studies met the inclusion criteria, with intervention durations ranged from 3 to 10 days. Moringa supplementation increased significantly breast milk volume by up to 400 mL/day compared to controls. Serum prolactin levels also rose significantly with a mean increase of 231.72 ng/mL Most studies exhibited low to moderate risk of bias, though one study exhibited high risk due to lack of binding and subjective outcome measurement. Moringa oleifera leaf supplementation appears to enhance lactation by increasing milk volume and prolactin levels in postpartum mothers. However, further longer-term studies are needed to establish optimal dosing, sustained effectiveness, and safety. Full article
(This article belongs to the Section Dairy)
Show Figures

Graphical abstract

24 pages, 3509 KB  
Article
Spray-Dried Celtis iguanaea (Jacq.) Planch (Cannabaceae) Extract: Building Evidence for Its Therapeutic Potential in Pain and Inflammation Management
by Kátia Regina Ribeiro, Rúbia Bellard e Silva, João Paulo Costa Rodrigues, Mairon César Coimbra, Laura Jéssica Pereira, Emmilly de Oliveira Alves, Flávio Martins de Oliveira, Marx Osório Araújo Pereira, Eric de Souza Gil, Carlos Alexandre Carollo, Nadla Soares Cassemiro, Camile Aparecida da Silva, Pablinny Moreira Galdino de Carvalho, Flávia Carmo Horta Pinto, Renan Diniz Ferreira, Zakariyya Muhammad Bello, Edilene Santos Alves de Melo, Marina Andrade Rocha, Ana Gabriela Silva, Rosy Iara Maciel Azambuja Ribeiro, Adriana Cristina Soares and Renê Oliveira do Coutoadd Show full author list remove Hide full author list
Plants 2025, 14(13), 2008; https://doi.org/10.3390/plants14132008 - 30 Jun 2025
Viewed by 456
Abstract
Celtis iguanaea, widely used in Brazilian folk medicine, is known for its analgesic and anti-inflammatory properties. This study evaluated the in vitro antioxidant capacity and the in vivo antinociceptive and anti-inflammatory mechanisms of the standardized spray-dried Celtis iguanaea hydroethanolic leaf extract (SDCi). Phytochemical [...] Read more.
Celtis iguanaea, widely used in Brazilian folk medicine, is known for its analgesic and anti-inflammatory properties. This study evaluated the in vitro antioxidant capacity and the in vivo antinociceptive and anti-inflammatory mechanisms of the standardized spray-dried Celtis iguanaea hydroethanolic leaf extract (SDCi). Phytochemical analysis showed that SDCi contains 21.78 ± 0.82 mg/g polyphenols, 49.69 ± 0.57 mg/g flavonoids, and 518.81 ± 18.02 mg/g phytosterols. UFLC-DAD-MS identified iridoid glycosides, p-coumaric acid glycosides, flavones, and unsaturated fatty acids. Antioxidant assays revealed an IC50 of 301.6 ± 38.8 µg/mL for DPPH scavenging and an electrochemical index of 6.1 μA/V. In vivo, SDCi (100–1000 mg/kg, p.o) did not impair locomotor function (rotarod test) but significantly reduced acetic acid-induced abdominal writhing and both phases of the formalin test at higher doses (300 and 1000 mg/kg). The antinociceptive effects were independent of α-2 adrenergic receptors. SDCi also increased latency in the hot-plate test and reduced paw edema in the carrageenan model, accompanied by decreased IL-1β and increased IL-10 levels. Histological analysis showed a 50% reduction in inflammatory cell infiltration. These findings support SDCi as an effective anti-inflammatory and antinociceptive phytopharmaceutical intermediate, with potential applications in managing pain and inflammation. Full article
Show Figures

Figure 1

14 pages, 3918 KB  
Article
Beta-Sitosterol Enhances Classical Swine Fever Virus Infection: Insights from RNA-Seq Analysis
by Yayun Liu, Dongdong Yin, Jieru Wang, Yin Dai, Xuehuai Shen, Lei Yin, Bin Zhou and Xiaocheng Pan
Viruses 2025, 17(7), 933; https://doi.org/10.3390/v17070933 - 30 Jun 2025
Viewed by 367
Abstract
Beta-sitosterol (BS), a naturally occurring phytosterol abundant in plants, has been reported to exhibit diverse biological activities, including immunomodulatory and antiviral effects. Classical swine fever virus (CSFV), a member of the Pestivirus genus, remains a persistent threat to the swine industry worldwide, causing [...] Read more.
Beta-sitosterol (BS), a naturally occurring phytosterol abundant in plants, has been reported to exhibit diverse biological activities, including immunomodulatory and antiviral effects. Classical swine fever virus (CSFV), a member of the Pestivirus genus, remains a persistent threat to the swine industry worldwide, causing considerable economic damage. Our research found that BS significantly enhances the replication of both the CSFV-Shimen strain and the attenuated C-strain vaccine virus in PK-15 cells. Additionally, transcriptomic profiling (RNA-Seq) identified 175 differentially expressed genes (DEGs) following BS exposure, comprising 53 upregulated and 122 downregulated genes. Further results demonstrated that treatment with β-sitosterol suppressed IκBα expression, thereby activating the NF-κB pathway, and that knockdown of endogenous IκBα significantly promoted CSFV replication. These findings contribute to a deeper understanding of how BS influences the CSFV infection process, suggesting its role as a host lipid-associated factor facilitating viral propagation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 2118 KB  
Article
Oxidative Stability of Phytosterols in Camellia Seed Oil During Heating: The Impact of Different Antioxidants
by Dongkun Zhao, Xin Wang, Sicong You, Lijuan Wang, Usman Amjad, Baocheng Xu, Xinjing Dou and Lili Liu
Foods 2025, 14(13), 2297; https://doi.org/10.3390/foods14132297 - 28 Jun 2025
Viewed by 511
Abstract
Phytosterols (PS) have specific oxidation rules in different lipid media. After oxidation, PS will form oxidation products, which has potential physiological toxicity to the human body. Camellia seed oil (CSO) is a unique emerging edible oil in China. This oil has a fatty [...] Read more.
Phytosterols (PS) have specific oxidation rules in different lipid media. After oxidation, PS will form oxidation products, which has potential physiological toxicity to the human body. Camellia seed oil (CSO) is a unique emerging edible oil in China. This oil has a fatty acid composition similar to olive oil, in which oleic acid is dominant. In order to solve the thermal oxidation of PS in CSO at high temperature (180 °C), we studied its antioxidant strategy by evaluating different antioxidants. Four antioxidants—BHA, TBHQ, epigallocatechin gallate (EGCG), and α-tocopherol (VE)—along with one synergist, citric acid (CA), were selected and used in this study. The antioxidant effects of different combinations (single antioxidant, single antioxidant + CA, mixed antioxidant, mixed antioxidant + CA) were compared. After 180 min of heating, the PS and phytosterols oxidation products (7α-hydroxy-, 7β-hydroxy-, 5α,6α-epoxy-, 5β,6β-epoxy-, 7-keto-, and trihydroxy-PS) were estimated by GC-MS. Through comparative analysis, the results showed that the combination of mixed antioxidants and CA had the best antioxidant effect, and the inhibition rate of VE + TBHQ +CA was as high as 42%, which had a breakthrough significance for stabilizing the thermal oxidation of PS in camellia seed oil. At the same time, it also provides a valuable reference for ensuring the edible safety of camellia seed oil in Chinese food heating habits. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

17 pages, 5099 KB  
Article
β-Secosterol, an Oxyphytosterol Produced Through the Reaction of β-Sitosterol with Ozone, Demonstrates Different Cytotoxic Effects on BRL-3A and HTC Cells
by Bianca S. Takayasu, Igor R. Martins, Miriam Uemi, Janice Onuki and Glaucia M. Machado-Santelli
Biomolecules 2025, 15(7), 939; https://doi.org/10.3390/biom15070939 - 27 Jun 2025
Viewed by 380
Abstract
Sitosterol (Sito) is a phytosterol with bioactive properties, including reducing atherosclerosis risk and anti-inflammatory and antitumoral effects. However, it can be oxidized by reactive oxygen species such as ozone (O3), producing oxyphytosterols with harmful effects such as cytotoxicity, oxidative stress, and [...] Read more.
Sitosterol (Sito) is a phytosterol with bioactive properties, including reducing atherosclerosis risk and anti-inflammatory and antitumoral effects. However, it can be oxidized by reactive oxygen species such as ozone (O3), producing oxyphytosterols with harmful effects such as cytotoxicity, oxidative stress, and proatherogenicity. Ozone, a strong oxidant and common pollutant, can alter plant steroid compounds, raising concerns about dietary oxyphytosterol intake. Studies identify β-Secosterol (βSec) as the primary ozone-derived oxyphytosterol from Sito, exhibiting cytotoxic effects on HepG2 human liver tumor cells. This study investigated βSec’s biological effects on two rat liver cell lines: BRL-3A (immortalized) and HTC (tumoral), examining cell death, cell cycle progression, morphology, and cytoskeleton organization. While Sito influenced cell metabolic activity without affecting cell survival or morphology, βSec demonstrated significant cytotoxicity in both cell lines. It induced G0/G1 cell cycle arrest and disrupted cytoskeleton organization, with different implications: BRL-3A cells showed persistent cytoskeletal changes potentially linked to tumor induction, while HTC cells displayed chemoresistance, restoring cytoskeletal integrity and enhancing metastatic potential. These findings reveal βSec’s complex, context-dependent effects, suggesting it may promote tumor-like behavior in non-tumoral cells and resistance mechanisms in cancer cells, contributing to understanding oxyphytosterols’ implications for physiological and pathological conditions. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

Back to TopTop