Microwave Assisted Extraction of Phenolic Compounds from Four Different Spices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total phenols and antioxidant activity
3. Materials and Methods
3.1. Chemicals
3.2. Microwave-assisted extraction (MAE)
3.3. Ultrasound assisted extraction (UAE)
3.4. Antioxidant activity: ABTS assay
3.5. Antioxidant activity: DPPH assay
3.6. Antioxidant activity: FRAP assay
3.7. Determination of total phenolics (Folin-Ciocalteu)
4. Conclusions
References
- Shobana, S.; Akhilender Naidu, K. Antioxidant activity of selected Indian spices. Prostagland. Leuk. Essent. Fatty 2000, 62, 107–110. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I.; Spencer, J.P.E.; Rossi, R.; Aeschbach, R.; Khan, A.; Mahmood, N.; Munoz, A.; Murcia, A.; Butler, J.; Halliwell, B. An evaluation of the antioxidant and antiviral action of extracts of rosemary and provencal herbs. Food Chem. Toxicol. 1996, 34, 449–456. [Google Scholar] [CrossRef]
- Cuvelier, M.E.; Berset, C.; Richard, H. Antioxidant constituents in sage (Salvia officinalis). J. Agric. Food Chem. 1994, 42, 665–669. [Google Scholar] [CrossRef]
- Melo, E.D.; Mancini, J.; Guerra, N.B. Characterization of antioxidant compounds in aqueous coriander extract (Coriandrum sativum L.). Lebensm.-Wiss. Technol.-Food Sci. Technol. 2005, 38, 15–19. [Google Scholar] [CrossRef]
- Frankel, E.N.; Huang, S.W.; Aeschbach, R.; Prior, E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J. Agric. Food Chem. 1996, 44, 131–135. [Google Scholar] [CrossRef]
- Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; van Poel, B.; Pieters, L.; Vlietinck, A.J.; Vanden Berghe, D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod. 1998, 61, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Laughton, M.J.; Evans, P.J.; Moroney, M.A.; Hoult, J.R.S.; Halliwell, B. Inhibition of mammalian 5-lipoxygenase and cyclooxygenase by flavonoids and phenolic dietary additives-Relationship to antioxidant activity and to iron lon-reducing ability. Biochem. Pharmacol. 1991, 42, 1673–1681. [Google Scholar] [CrossRef]
- Yanishlieva, N.V.; Marinova, E.M. Stabilisation of edible oils with natural antioxidants. Eur. J. Lipid Sci. Technol. 2001, 103, 752–767. [Google Scholar] [CrossRef]
- Srinivasan, K. Role of spices beyond food flavoring: Nutraceuticals with multiple health effects. Food Rev. Int. 2005, 21, 167–188. [Google Scholar] [CrossRef]
- Badei, A.Z.M.; El-Akel, A.T.M.; Faheid, S.M.M.; Mahmoud, B.S.M. Application of some spices in flavoring and preservation of cookies: 1-Antioxidant properties of cardamom, cinnamon, and clove. Dtsch. Lebensm.-Rundsch. 2002, 98, 176–183. [Google Scholar]
- Larson, R.A. The antioxidants of higher plants. Phytochemistry 1988, 27, 969–978. [Google Scholar] [CrossRef]
- Heldt, H.W. Plant Biochemistry and Molecular Biology; Oxford Univ. Press: New York, NY, USA, 1997; p. 522. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Res. 1995, 22, 375–383. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, H.; Ho, C. Effects of Rosemary Extracts and Major Constituents on Lipid Oxidation and Soybean Lipoxygenase Activity. J. Am. Oil Chem. Soc. 1992, 69, 999–1002. [Google Scholar] [CrossRef]
- Kaufmann, B.; Christen, P. Recent Extraction Techniques for Natural Products: Microwave-assisted Extraction and Pressurised Solvent Extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C.; Binello, A. Rubiolo, P. Determination of Phenolic Diterpene Antioxidants in Rosemary (Rosmarinus officinalis L.) with Different Methods of Extraction and Analysis. Phytochem. Anal. 2000, 11, 236–242. [Google Scholar] [CrossRef]
- Ganzler, K.; Salgo, A.; Valko, K. Microwave extraction-a novel sample preparation method for chromatography. J. Chromatogr. 1986, 371, 299–306. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process 2003, 42, 129–133. [Google Scholar] [CrossRef]
- Hong, N.; Yaylayan, V.A.; Raghavan, G.S.V.; Paré, J.R.J.; Bélanger, J.M.R. Microwave assisted extraction of phenolic compounds from grape seed. Nat. Prod. Res. 2001, 15, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.; Ramaiola, I.; Urbano, M.; Bracco, F.; Collina, S. Microwave-assisted extraction of cumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction. J. Agric. Food Chem. 2006, 1125, 147–151. [Google Scholar]
- Waksmundzka-Hajnos, M.; Petruczynik, A.; Dragan, A.; Wianowska, D.; Dawidowicz, A.L.; Sowa, I. Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits. J. Chromatogr. B 2004, 800, 181–187. [Google Scholar] [CrossRef]
- Mattina, M.J.I.; Berger, W.A.I.; Denson, C.L. Microwave-Assisted Extraction of Taxanes from Taxus Biomass. J. Agric. Food Chem. 1997, 45, 4691–4696. [Google Scholar] [CrossRef]
- Dai, J.; Yaylayan, V.; Raghavan, G.; Pare, J. Extraction and colorimetric determination of azadirachtin related limonoids in neem seed kernel. J. Agric. Food Chem. 1999, 47, 3738–3742. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Liu, H.; Jia, G.; Shu, Y.Y. Microwave-assisted extraction of glycyrrhizic acid from licorice root. Biochem. Eng. J. 2000, 5, 173–177. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. Biochem. Eng. J. 2002, 12, 71–77. [Google Scholar] [CrossRef]
- Hao, J.; Han, W.; Huang, S.; Xue, B.; Deng, X. Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep. Purif. Technol. 2002, 28, 191–196. [Google Scholar] [CrossRef]
- Shu, Y.Y.; Ko, M.Y.; Chang, Y.S. Microwave-assisted extraction of ginsenosides from ginseng root. Microchem. J. 2003, 74, 131–139. [Google Scholar] [CrossRef]
- Proestos, C.; Chorianopoulos, N.; Nychas, G.J.E.; Komaitis, M. RP-HPLC Analysis of the Phenolic Compounds of Plant Extracts. Investigation of Their Antioxidant Capacity and Antimicrobial Activity. J. Agric. Food Chem. 2005, 53, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Suri, S.; Upadhyay, G.; Singh, B.N. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int. J. Food Sci. Nutr. 2007, 58, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.N.; Yang, B.; Dong, X.; Jiang, G.; Zhang, H.; Xie, H.; Jiang, Y. Flavonoid contents and antioxidant activities from Cinnamomum species. Innov. Food Sci. Emerg. Technol. 2009, 10, 627–632. [Google Scholar] [CrossRef]
- Su, L.; Yin, J.J.; Charles, D.; Zhou, K.; Moore, J.; Yu, L. (Lucy). Total phenolic contents, chelating capacities and radical-scavening properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. J. Agric. Food Chem. 2007, 100, 990–997. [Google Scholar] [CrossRef]
- Politeo, O.; Jukić, M.; Miloš, M. Chemical Composition and Antioxidant Activity of Essential Oils of Twelve Spices Plants. Croatia Chem. Acta 2006, 79, 545–552. [Google Scholar]
- Tomaino, A.; Cimino, F.; Zimbaletti, V.; Venuti, V.; Sulfaro, V.; De Pasquale, A.; Saija, A. Influence of heating on antioxidant activity and the chemical composition of same spices essential oils. J. Agric. Food Chem. 2005, 89, 549–554. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Salvatore, S.; Del Rio, D.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res. 2006, 50, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strani, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | Total phenolic content (mg gallic acid/100 g) | |
---|---|---|
UAE | MAE | |
Coriandrum sativum | 41,812 ± 2,765 | 82,091 ± 8,432 |
Cinnamomum zeylanicum | 506,597 ± 23,518 | 1679,201 ± 65,333 |
Cuminum cyminum | 290,296 ± 13,545 | 1159,542 ± 21,239 |
Crocus sativus | 500,213 ± 34,745 | 2939,472 ± 24,610 |
Sample | Antioxidant activity (ABTS) mmol Trolox®/100 g | Antioxidant activity (DPPH) % inhibition | Antioxidant activity (FRAP) mmol Trolox®/100 g | |||
---|---|---|---|---|---|---|
UAE | MAE | UAE | MAE | UAE | MAE | |
Coriandrum sativum | 0,080 | 0,035 | 74,379 | 25,565 | 1,198 | 68,765 |
Cinnamomum zeylanicum | 1,271 | 3,172 | 90,451 | 91,789 | 8,176 | 240,045 |
Cuminum cyminum | 0,217 | 2,671 | 85,432 | 88,432 | 50,345 | 140,319 |
Crocus sativus | 0,045 | 1,258 | 15,692 | 19,673 | 8,450 | 391,123 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave Assisted Extraction of Phenolic Compounds from Four Different Spices. Molecules 2010, 15, 6365-6374. https://doi.org/10.3390/molecules15096365
Gallo M, Ferracane R, Graziani G, Ritieni A, Fogliano V. Microwave Assisted Extraction of Phenolic Compounds from Four Different Spices. Molecules. 2010; 15(9):6365-6374. https://doi.org/10.3390/molecules15096365
Chicago/Turabian StyleGallo, Monica, Rosalia Ferracane, Giulia Graziani, Alberto Ritieni, and Vincenzo Fogliano. 2010. "Microwave Assisted Extraction of Phenolic Compounds from Four Different Spices" Molecules 15, no. 9: 6365-6374. https://doi.org/10.3390/molecules15096365
APA StyleGallo, M., Ferracane, R., Graziani, G., Ritieni, A., & Fogliano, V. (2010). Microwave Assisted Extraction of Phenolic Compounds from Four Different Spices. Molecules, 15(9), 6365-6374. https://doi.org/10.3390/molecules15096365