Bioinformatics Resources and Tools for Phage Display
Abstract
:1. Introduction
2. Databases
Databases | Availabilities | Highlights and comments | Refs |
---|---|---|---|
ASPD | http://wwwmgs.bionet.nsc.ru/mgs/gnw/aspd | First mimotope database | [20] |
RELIC Peptides | http://relic.bio.anl.gov/relicPeptides.aspx | Small molecules-oriented | [21] |
MOTIF | Available after signing an agreement | Integrated into EMT tool | [22] |
PEPBANK | http://pepbank.mgh.harvard.edu | Not only mimotopes | [23] |
MimoDB | http://immunet.cn/mimodb | Newest and largest | [24] |
3. Algorithms, Programs and Their Applications
Tool Names* | Availabilities | Highlights and comments | Refs |
---|---|---|---|
PEPTIDE | Not stated | Relies on other commercial tools | [26] |
Ganglberger | Not stated | Coarse-grained 3-dimensional search | [27] |
FINDMAP | Not stated | Independent of template structure | [28] |
SiteLight | Not stated | First patch-based method | [29] |
Mapitope | http://pepitope.tau.ac.il | First pairs-based method | [30,31] |
RELIC | http://relic.bio.anl.gov | A suite of 14 computational tools | [21] |
3DEX | http://www.schreiber-abc.com/3dex | First downloadable stand-alone tool | [32] |
MIMOX | http://immunet.cn/mimox | First freely-accessible web server | [33] |
MIMOP | Available upon request | Includes MimAlign and MimCons | [34] |
EPIMAP | Not stated | Improved version of FINDMAP | [35] |
PepSurf | http://pepitope.tau.ac.il | First graph-based method | [36] |
Pepitope | http://pepitope.tau.ac.il | Server for Mapitope and PepSurf | [37] |
Perschinka | Available upon request | Only tool coded with MATLAB | [38] |
Pep-3D-Search | http://kyc.nenu.edu.cn/Pep3DSearch | Ant Colony Optimization algorithm | [39] |
Denisova | Not stated | Based on the idea of Mapitope | [40,41,42] |
EpiSearch | http://curie.utmb.edu/episearch.html | Impressive performance | [43] |
SAROTUP | http://immunet.cn/sarotup | Detects target-unrelated peptides | [44] |
MimoPro | http://59.73.198.183:8080/MimoPro | Fluctuating distance threshold |
3.1. Tools for Exploring Protein-Protein Interactions
3.2. Tools for Exploring Small Molecule-Protein Interactions
Tool Names | Availabilities | Highlights and comments |
---|---|---|
DNA2PRO | https://relic.bio.anl.gov/dna2pro.aspx | Mimotope sequence from DNA sequence |
AAFREQ | https://relic.bio.anl.gov/aafreqs.aspx | Frequency of each residue at each position |
POPDIV | https://relic.bio.anl.gov/popdiv.aspx | Population diversity of mimotopes |
AADIV | https://relic.bio.anl.gov/aafreqs3.aspx | Amino acid frequency and diversity |
INFO | https://relic.bio.anl.gov/info.aspx | Likelihood of random occurrence |
DIVAA | https://relic.bio.anl.gov/divaa.aspx | Sequence diversities and relationships |
MOTIF1 | https://relic.bio.anl.gov/motif1.aspx | Identifies continuous short motifs |
MOTIF2 | https://relic.bio.anl.gov/motif2.aspx | Identifies discontinuous short motifs |
CLOSEcon | https://relic.bio.anl.gov/closecon.aspx | Finds contact residues for a small ligand |
HETEROalign | https://relic.bio.anl.gov/hetero.aspx | Aligns a mimotope to a PDB file |
DistSim | https://relic.bio.anl.gov/DistSim.aspx | Computes distance and similarity |
MATCH | https://relic.bio.anl.gov/match.aspx | Aligns mimotopes to template sequence |
FASTAcon | https://relic.bio.anl.gov/fastaconsen.aspx | Finds short consensus sequences |
FASTAskan | https://relic.bio.anl.gov/fastaskan.aspx | Possible templates for a set of mimotopes |
4. Problems and Prospects
Acknowledgements
References and Notes
- Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar]
- Scott, J.K.; Smith, G.P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386–390. [Google Scholar]
- Devlin, J.J.; Panganiban, L.C.; Devlin, P.E. Random peptide libraries: a source of specific protein binding molecules. Science 1990, 249, 404–406. [Google Scholar]
- McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990, 348, 552–554. [Google Scholar]
- Pasqualini, R.; Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 1996, 380, 364–366. [Google Scholar] [CrossRef]
- Smith, G.P.; Petrenko, V.A. Phage display. Chem. Rev. 1997, 97, 391–410. [Google Scholar]
- Smothers, J.F.; Henikoff, S.; Carter, P. Affinity selection from biological libraries. Science 2002, 298, 621–622. [Google Scholar] [CrossRef]
- Tong, A.H.; Drees, B.; Nardelli, G.; Bader, G.D.; Brannetti, B.; Castagnoli, L.; Evangelista, M.; Ferracuti, S.; Nelson, B.; Paoluzi, S.; Quondam, M.; Zucconi, A.; Hogue, C.W.; Fields, S.; Boone, C.; Cesareni, G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 2002, 295, 321–324. [Google Scholar]
- Thom, G.; Cockroft, A.C.; Buchanan, A.G.; Candotti, C.J.; Cohen, E.S.; Lowne, D.; Monk, P.; Shorrock-Hart, C.P.; Jermutus, L.; Minter, R.R. Probing a protein-protein interaction by in vitro evolution. Proc. Natl. Acad. Sci. USA 2006, 103, 7619–7624. [Google Scholar]
- Wrighton, N.C.; Farrell, F.X.; Chang, R.; Kashyap, A.K.; Barbone, F.P.; Mulcahy, L.S.; Johnson, D.L.; Barrett, R.W.; Jolliffe, L.K.; Dower, W.J. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996, 273, 458–464. [Google Scholar]
- Cwirla, S.E.; Balasubramanian, P.; Duffin, D.J.; Wagstrom, C.R.; Gates, C.M.; Singer, S.C.; Davis, A.M.; Tansik, R.L.; Mattheakis, L.C.; Boytos, C.M.; Schatz, P.J.; Baccanari, D.P.; Wrighton, N.C.; Barrett, R.W.; Dower, W.J. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 1997, 276, 1696–1699. [Google Scholar]
- Georgiou, G.; Stathopoulos, C.; Daugherty, P.S.; Nayak, A.R.; Iverson, B.L.; Curtiss, R., 3rd. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 1997, 15, 29–34. [Google Scholar] [CrossRef]
- Puntoriero, G.; Meola, A.; Lahm, A.; Zucchelli, S.; Ercole, B.B.; Tafi, R.; Pezzanera, M.; Mondelli, M.U.; Cortese, R.; Tramontano, A.; Galfre, G.; Nicosia, A. Towards a solution for hepatitis C virus hypervariability: mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants. EMBO J. 1998, 17, 3521–3533. [Google Scholar] [CrossRef]
- Macdougall, I.C.; Rossert, J.; Casadevall, N.; Stead, R.B.; Duliege, A.M.; Froissart, M.; Eckardt, K.U. A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N. Engl. J. Med. 2009, 361, 1848–1855. [Google Scholar] [CrossRef]
- Geysen, H.M.; Rodda, S.J.; Mason, T.J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol. Immunol. 1986, 23, 709–715. [Google Scholar] [CrossRef]
- Menendez, A.; Scott, J.K. The nature of target-unrelated peptides recovered in the screening of phage-displayed random peptide libraries with antibodies. Anal. Biochem. 2005, 336, 145–157. [Google Scholar]
- Kolb, G.; Boiziau, C. Selection by phage display of peptides targeting the HIV-1 TAR element. RNA Biol. 2005, 2, 28–33. [Google Scholar] [CrossRef]
- Brammer, L.A.; Bolduc, B.; Kass, J.L.; Felice, K.M.; Noren, C.J.; Hall, M.F. A target-unrelated peptide in an M13 phage display library traced to an advantageous mutation in the gene II ribosome-binding site. Anal. Biochem. 2008, 373, 88–98. [Google Scholar]
- Thomas, W.D.; Golomb, M.; Smith, G.P. Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures. Anal. Biochem. 2010, 407, 237–240. [Google Scholar]
- Valuev, V.P.; Afonnikov, D.A.; Ponomarenko, M.P.; Milanesi, L.; Kolchanov, N.A. ASPD (Artificially Selected Proteins/Peptides Database): a database of proteins and peptides evolved in vitro. Nucleic. Acids Res. 2002, 30, 200–202. [Google Scholar] [CrossRef]
- Mandava, S.; Makowski, L.; Devarapalli, S.; Uzubell, J.; Rodi, D.J. RELIC--a bioinformatics server for combinatorial peptide analysis and identification of protein-ligand interaction sites. Proteomics 2004, 4, 1439–1460. [Google Scholar] [CrossRef]
- Batori, V.; Friis, E.P.; Nielsen, H.; Roggen, E.L. An in silico method using an epitope motif database for predicting the location of antigenic determinants on proteins in a structural context. J. Mol. Recognit. 2006, 19, 21–29. [Google Scholar] [CrossRef]
- Shtatland, T.; Guettler, D.; Kossodo, M.; Pivovarov, M.; Weissleder, R. PepBank--a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics 2007, 8, 280. [Google Scholar] [CrossRef]
- Ru, B.; Huang, J.; Dai, P.; Li, S.; Xia, Z.; Ding, H.; Lin, H.; Guo, F.; Wang, X. MimoDB: A new repository for mimotope data derived from phage display technology. Molecules 2010, 15, 8279–8288. [Google Scholar] [CrossRef]
- Cortese, R.; Monaci, P.; Nicosia, A.; Luzzago, A.; Felici, F.; Galfre, G.; Pessi, A.; Tramontano, A.; Sollazzo, M. Identification of biologically active peptides using random libraries displayed on phage. Curr. Opin. Biotechnol. 1995, 6, 73–80. [Google Scholar] [CrossRef]
- Pizzi, E.; Cortese, R.; Tramontano, A. Mapping epitopes on protein surfaces. Biopolymers 1995, 36, 675–680. [Google Scholar] [CrossRef]
- Ganglberger, E.; Grunberger, K.; Sponer, B.; Radauer, C.; Breiteneder, H.; Boltz-Nitulescu, G.; Scheiner, O.; Jensen-Jarolim, E. Allergen mimotopes for 3-dimensional epitope search and induction of antibodies inhibiting human IgE. FASEB J. 2000, 14, 2177–2184. [Google Scholar] [CrossRef]
- Mumey, B.M.; Bailey, B.W.; Kirkpatrick, B.; Jesaitis, A.J.; Angel, T.; Dratz, E.A. A new method for mapping discontinuous antibody epitopes to reveal structural features of proteins. J. Comput. Biol. 2003, 10, 555–567. [Google Scholar] [CrossRef]
- Halperin, I.; Wolfson, H.; Nussinov, R. SiteLight: binding-site prediction using phage display libraries. Protein Sci. 2003, 12, 1344–1359. [Google Scholar] [CrossRef]
- Enshell-Seijffers, D.; Denisov, D.; Groisman, B.; Smelyanski, L.; Meyuhas, R.; Gross, G.; Denisova, G.; Gershoni, J.M. The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1. J. Mol. Biol. 2003, 334, 87–101. [Google Scholar] [CrossRef]
- Bublil, E.M.; Freund, N.T.; Mayrose, I.; Penn, O.; Roitburd-Berman, A.; Rubinstein, N.D.; Pupko, T.; Gershoni, J.M. Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Proteins 2007, 68, 294–304. [Google Scholar] [CrossRef]
- Schreiber, A.; Humbert, M.; Benz, A.; Dietrich, U. 3D-Epitope-Explorer (3DEX): localization of conformational epitopes within three-dimensional structures of proteins. J. Comput. Chem. 2005, 26, 879–887. [Google Scholar] [CrossRef]
- Huang, J.; Gutteridge, A.; Honda, W.; Kanehisa, M. MIMOX: a web tool for phage display based epitope mapping. BMC Bioinformatics 2006, 7, 451. [Google Scholar] [CrossRef]
- Moreau, V.; Granier, C.; Villard, S.; Laune, D.; Molina, F. Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 2006, 22, 1088–1095. [Google Scholar] [CrossRef]
- Mumey, B.; Ohler, N.; Angel, T.; Jesaitis, A.; Dratz, E. Filtering epitope alignments to improve protein surface prediction. In Frontiers of High Performance Computing and Networking – ISPA 2006 Workshops; Min, G., Di Martino, B., Yang, L., Guo, M., Ruenger, G., Eds.; Springer: Berlin, Germany, 2006; Vol. 4331, pp. 648–657. [Google Scholar]
- Mayrose, I.; Shlomi, T.; Rubinstein, N.D.; Gershoni, J.M.; Ruppin, E.; Sharan, R.; Pupko, T. Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic. Acids Res. 2007, 35, 69–78. [Google Scholar] [CrossRef]
- Mayrose, I.; Penn, O.; Erez, E.; Rubinstein, N.D.; Shlomi, T.; Freund, N.T.; Bublil, E.M.; Ruppin, E.; Sharan, R.; Gershoni, J.M.; Martz, E.; Pupko, T. Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 2007, 23, 3244–3246. [Google Scholar] [CrossRef]
- Perschinka, H.; Wellenzohn, B.; Parson, W.; van der Zee, R.; Willeit, J.; Kiechl, S.; Wick, G. Identification of atherosclerosis-associated conformational heat shock protein 60 epitopes by phage display and structural alignment. Atherosclerosis 2007, 194, 79–87. [Google Scholar] [CrossRef]
- Huang, Y.X.; Bao, Y.L.; Guo, S.Y.; Wang, Y.; Zhou, C.G.; Li, Y.X. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis. BMC Bioinformatics 2008, 9, 538. [Google Scholar] [CrossRef]
- Denisova, G.F.; Denisov, D.A.; Yeung, J.; Loeb, M.B.; Diamond, M.S.; Bramson, J.L. A novel computer algorithm improves antibody epitope prediction using affinity-selected mimotopes: a case study using monoclonal antibodies against the West Nile virus E protein. Mol. Immunol. 2008, 46, 125–134. [Google Scholar] [CrossRef]
- Denisov, D.A.; Denisova, G.F.; Lelic, A.; Loeb, M.B.; Bramson, J.L. Deciphering epitope specificities within polyserum using affinity selection of random peptides and a novel algorithm based on pattern recognition theory. Mol. Immunol. 2009, 46, 429–436. [Google Scholar] [CrossRef]
- Denisova, G.F.; Denisov, D.A.; Bramson, J.L. Applying bioinformatics for antibody epitope prediction using affinity-selected mimotopes - relevance for vaccine design. Immun. Res. 2010, 6, S6, (Suppl. 2). [Google Scholar]
- Negi, S.S.; Braun, W. Automated detection of conformational epitopes using phage display Peptide sequences. Bioinform. Biol. Insights 2009, 3, 71–81. [Google Scholar]
- Huang, J.; Ru, B.; Li, S.; Lin, H.; Guo, F.B. SAROTUP: scanner and reporter of target-unrelated peptides. J. Biomed. Biotechnol. 2010, 2010, 101932. [Google Scholar]
- Bailey, B.W.; Mumey, B.; Hargrave, P.A.; Arendt, A.; Ernst, O.P.; Hofmann, K.P.; Callis, P.R.; Burritt, J.B.; Jesaitis, A.J.; Dratz, E.A. Constraints on the conformation of the cytoplasmic face of dark-adapted and light-excited rhodopsin inferred from antirhodopsin antibody imprints. Protein Sci. 2003, 12, 2453–2475. [Google Scholar]
- Piscitelli, C.L.; Angel, T.E.; Bailey, B.W.; Hargrave, P.; Dratz, E.A.; Lawrence, C.M. Equilibrium between metarhodopsin-I and metarhodopsin-II is dependent on the conformation of the third cytoplasmic loop. J. Biol. Chem. 2006, 281, 6813–6825. [Google Scholar]
- Campion, Y.; Paclet, M.H.; Jesaitis, A.J.; Marques, B.; Grichine, A.; Berthier, S.; Lenormand, J.L.; Lardy, B.; Stasia, M.J.; Morel, F. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody. Biochimie 2007, 89, 1145–1158. [Google Scholar] [CrossRef]
- Riesselman, M.; Miettinen, H.M.; Gripentrog, J.M.; Lord, C.I.; Mumey, B.; Dratz, E.A.; Stie, J.; Taylor, R.M.; Jesaitis, A.J. C-terminal tail phosphorylation of N-formyl peptide receptor: differential recognition of two neutrophil chemoattractant receptors by monoclonal antibodies NFPR1 and NFPR2. J. Immunol. 2007, 179, 2520–2531. [Google Scholar]
- Campion, Y.; Jesaitis, A.J.; Nguyen, M.V.; Grichine, A.; Herenger, Y.; Baillet, A.; Berthier, S.; Morel, F.; Paclet, M.H. New p22-phox monoclonal antibodies: identification of a conformational probe for cytochrome b 558. J. Innate. Immun. 2009, 1, 556–569. [Google Scholar] [CrossRef]
- Bublil, E.M.; Yeger-Azuz, S.; Gershoni, J.M. Computational prediction of the cross-reactive neutralizing epitope corresponding to the monclonal antibody b12 specific for HIV-1 gp120. FASEB J. 2006, 20, 1762–1774. [Google Scholar] [CrossRef]
- Tarnovitski, N.; Matthews, L.J.; Sui, J.; Gershoni, J.M.; Marasco, W.A. Mapping a neutralizing epitope on the SARS coronavirus spike protein: computational prediction based on affinity-selected peptides. J. Mol. Biol. 2006, 359, 190–201. [Google Scholar] [CrossRef]
- Huang, J.; Xia, M.; Lin, H.; Guo, F.-B. Information Loss and Noise Inclusion Risk in Mimotope Based Epitope Mapping. In The 3rd International Conference on Bioinformatics and Biomedical Engineering(iCBBE2009), Beijing; 2009; pp. 1–3. [Google Scholar]
- Alonso, R.; Huerta, V.; de Leon, J.; Piedra, P.; Puchades, Y.; Guirola, O.; Chinea, G.; Montero, E. Towards the definition of a chimpanzee and human conserved CD6 domain 1 epitope recognized by T1 monoclonal antibody. Hybridoma (Larchmt) 2008, 27, 291–301. [Google Scholar] [CrossRef]
- Villa-Mancera, A.; Quiroz-Romero, H.; Correa, D.; Ibarra, F.; Reyes-Perez, M.; Reyes-Vivas, H.; Lopez-Velazquez, G.; Gazarian, K.; Gazarian, T.; Alonso, R.A. Induction of immunity in sheep to Fasciola hepatica with mimotopes of cathepsin L selected from a phage display library. Parasitology 2008, 135, 1437–1445. [Google Scholar] [CrossRef]
- Sutherland, J.N.; Maynard, J.A. Characterization of a key neutralizing epitope on pertussis toxin recognized by monoclonal antibody 1B7. Biochemistry 2009, 48, 11982–11993. [Google Scholar] [CrossRef]
- Hartmann, C.; Muller, N.; Blaukat, A.; Koch, J.; Benhar, I.; Wels, W.S. Peptide mimotopes recognized by antibodies cetuximab and matuzumab induce a functionally equivalent anti-EGFR immune response. Oncogene 2010, 29, 4517–4527. [Google Scholar] [CrossRef]
- Tordesillas, L.; Pacios, L.F.; Palacin, A.; Cuesta-Herranz, J.; Madero, M.; Diaz-Perales, A. Characterization of IgE epitopes of Cuc m 2, the major melon allergen, and their role in cross-reactivity with pollen profilins. Clin. Exp. Allergy 2010, 40, 174–181. [Google Scholar]
- Prudencio, C.R.; Perez de la Lastra, J.M.; Canales, M.; Villar, M.; de la Fuente, J. Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. Vaccine 2010, 28, 5398–5406. [Google Scholar] [CrossRef]
- Carter, D.M.; Gagnon, J.N.; Damlaj, M.; Mandava, S.; Makowski, L.; Rodi, D.J.; Pawelek, P.D.; Coulton, J.W. Phage display reveals multiple contact sites between FhuA, an outer membrane receptor of Escherichia coli, and TonB. J. Mol. Biol. 2006, 357, 236–251. [Google Scholar] [CrossRef]
- Carter, D.M.; Miousse, I.R.; Gagnon, J.N.; Martinez, E.; Clements, A.; Lee, J.; Hancock, M.A.; Gagnon, H.; Pawelek, P.D.; Coulton, J.W. Interactions between TonB from Escherichia coli and the periplasmic protein FhuD. J. Biol. Chem. 2006, 281, 35413–35424. [Google Scholar]
- Kelly, K.A.; Nahrendorf, M.; Yu, A.M.; Reynolds, F.; Weissleder, R. In vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging. Mol. Imaging. Biol. 2006, 8, 201–207. [Google Scholar] [CrossRef]
- Krumpe, L.R.; Atkinson, A.J.; Smythers, G.W.; Kandel, A.; Schumacher, K.M.; McMahon, J.B.; Makowski, L.; Mori, T. T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries. Proteomics 2006, 6, 4210–4222. [Google Scholar] [CrossRef]
- Krumpe, L.R.; Schumacher, K.M.; McMahon, J.B.; Makowski, L.; Mori, T. Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library. BMC Biotechnol. 2007, 7, 65. [Google Scholar] [CrossRef]
- Nie, J.; Chang, B.; Traktuev, D.O.; Sun, J.; March, K.; Chan, L.; Sage, E.H.; Pasqualini, R.; Arap, W.; Kolonin, M.G. IFATS collection: Combinatorial peptides identify alpha5beta1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem Cells 2008, 26, 2735–2745. [Google Scholar] [CrossRef]
- Takakusagi, Y.; Kuramochi, K.; Takagi, M.; Kusayanagi, T.; Manita, D.; Ozawa, H.; Iwakiri, K.; Takakusagi, K.; Miyano, Y.; Nakazaki, A.; Kobayashi, S.; Sugawara, F.; Sakaguchi, K. Efficient one-cycle affinity selection of binding proteins or peptides specific for a small-molecule using a T7 phage display pool. Bioorg. Med. Chem. 2008, 16, 9837–9846. [Google Scholar]
- Cao, B.; Mao, C. Identification of microtubule-binding domains on microtubule-associated proteins by major coat phage display technique. Biomacromolecules 2009, 10, 555–564. [Google Scholar] [CrossRef]
- Segvich, S.; Biswas, S.; Becker, U.; Kohn, D. H. Identification of peptides with targeted adhesion to bone-like mineral via phage display and computational modeling. Cells Tissues Organs 2009, 189, 245–251. [Google Scholar] [CrossRef]
- Segvich, S.J.; Smith, H.C.; Kohn, D.H. The adsorption of preferential binding peptides to apatite-based materials. Biomaterials 2009, 30, 1287–1298. [Google Scholar] [CrossRef]
- Cunha-Junior, J.P.; Silva, D.A.; Silva, N.M.; Souza, M.A.; Souza, G.R.; Prudencio, C.R.; Pirovani, C.P.; Cezar, M. C.J.; Barbosa, B.F.; Goulart, L.R.; Mineo, J.R. A4D12 monoclonal antibody recognizes a new linear epitope from SAG2A Toxoplasma gondii tachyzoites, identified by phage display bioselection. Immunobiology 2010, 215, 26–37. [Google Scholar] [CrossRef]
- Shukla, G.S.; Krag, D.N. Phage-displayed combinatorial peptide libraries in fusion to beta-lactamase as reporter for an accelerated clone screening: Potential uses of selected enzyme-linked affinity reagents in downstream applications. Comb. Chem. High Throughput Screen. 2010, 13, 75–87. [Google Scholar] [CrossRef]
- Shukla, G.S.; Krag, D.N. Novel beta-lactamase-random peptide fusion libraries for phage display selection of cancer cell-targeting agents suitable for enzyme prodrug therapy. J. Drug Target 2010, 18, 115–124. [Google Scholar] [CrossRef]
- Giordano, R.J.; Cardo-Vila, M.; Salameh, A.; Anobom, C.D.; Zeitlin, B.D.; Hawke, D.H.; Valente, A.P.; Almeida, F.C.; Nor, J.E.; Sidman, R.L.; Pasqualini, R.; Arap, W. From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway. Proc. Natl. Acad. Sci. USA 2010, 107, 5112–5117. [Google Scholar]
- Cardo-Vila, M.; Giordano, R.J.; Sidman, R.L.; Bronk, L.F.; Fan, Z.; Mendelsohn, J.; Arap, W.; Pasqualini, R. From combinatorial peptide selection to drug prototype (II): targeting the epidermal growth factor receptor pathway. Proc. Natl. Acad. Sci. USA 2010, 107, 5118–5123. [Google Scholar]
- Sample Availability: Contact the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huang, J.; Ru, B.; Dai, P. Bioinformatics Resources and Tools for Phage Display. Molecules 2011, 16, 694-709. https://doi.org/10.3390/molecules16010694
Huang J, Ru B, Dai P. Bioinformatics Resources and Tools for Phage Display. Molecules. 2011; 16(1):694-709. https://doi.org/10.3390/molecules16010694
Chicago/Turabian StyleHuang, Jian, Beibei Ru, and Ping Dai. 2011. "Bioinformatics Resources and Tools for Phage Display" Molecules 16, no. 1: 694-709. https://doi.org/10.3390/molecules16010694
APA StyleHuang, J., Ru, B., & Dai, P. (2011). Bioinformatics Resources and Tools for Phage Display. Molecules, 16(1), 694-709. https://doi.org/10.3390/molecules16010694