Wu-Chia-Pi Solution Attenuates Carbon Tetrachloride-Induced Hepatic Injury through the Antioxidative Abilities of Its Components Acteoside and Quercetin
Abstract
:1. Introduction
2. Results
2.1. WCPS Display No Chronic Liver Toxicity in ICR Mice
Scientific Name | Ingredients | Used Parts | Marker Substance |
---|---|---|---|
A. gracilistylus Smith. | 38.4 g | Bark | Eleutheroside B1 |
S. miltiorrhiza Bunge | 38.4 g | Root | Tanshinone IIa |
R. glutinosa Liboschitz | 38.4 g | Root | Acteoside |
E. ulmoides Oliver | 38.4 g | Bark | Quercetin |
Z. officinale Roscoe | 38.4 g | Rhizome | Gingerol |
A. cochinensis Merrill | 38.4 g | Tuber | Asparagine |
L. chinense Miller | 38.4 g | Fruit | Betaine |
C. monnieri (L.) Cusson | 38.4 g | Fruit | Osthol |
Stalactite | 12.8 g | CaCO3 | |
35% alcohol | 1 L |
Variations (multiples of day 0) | |||
---|---|---|---|
GOT | GPT | GOT/GPT | |
Day 28 | Day 28 | Day 28 | |
Recommended dose a | |||
Blank | 1.05 ± 0.28 | 0.82 ± 0.23 | 1.44 ± 0.45 |
WCPS | 0.69 ± 0.27 | 0.66 ± 0.12 | 1.03 ± 0.40 |
High dose b | |||
Blank | 1.09 ± 0.02 | 1.02 ± 0.07 | 1.07 ± 0.01 |
WCPS | 0.95 ± 0.08 | 0.89 ± 0.25 | 1.07 ± 0.09 |
2.2. WCPS Reduced CCl4-Induced Acute Liver Injury in Mice
2.3. WCPE Displayed Significant Anti-oxidative Abilities
DPPH scavenging effects | |||
---|---|---|---|
Sample | Inhibition a (%) | IC50 value c | |
WCPE | 72.75 ± 2.08 | 0.60 ± 0.04 | mg/mL |
Acteoside | 77.23 ± 0.16 | 17.12 ± 0.30 | μM |
Quercetin | 69.31 ± 0.32 | 23.02 ± 0.57 | μM |
Osthol | 0.09 ± 0.16 | - | |
Betaine | 0.36 ± 0.63 | - | |
Tanshinone IIa | 39.44 ± 0.16 | - | |
α-Tocopherol b | 64.30 ± 1.92 | 50.39 ± 3.62 | μM |
2.4. Acteoside and Quercetin Were the Major Anti-Oxidative Components in WCPS
Sample | Content | |
---|---|---|
Acteoside | Quercetin | |
WCPS (μg/mL) | 23.51 ± 3.67 | 97.95 ± 2.29 |
WCPE (μg/mg) | 0.36 ± 0.01 | 3.03 ± 0.07 |
3. Discussion
4. Experimental
4.1. Materials
4.2. Animals
4.3. Preparation of Wu-Chia-Pi Solution (WCPS) and Extract (WCPE)
4.4. Hepatoprotective Effects of WCPS
4.4.1. Chronic Liver Toxicity in ICR Mice
4.4.2. CCl4-Induced Hepatic Injury in ICR Mice
4.5. Antioxidative Assays
4.5.1. Lipid Peroxidation Assay
4.5.2. DPPH Radical-Scavenging Assay
4.5.3. Catalase Assay
4.6. High-Performance Liquid Chromatographic Analysis of Marker Substances in WCPS and WCPE
4.7. Statistical Analysis
5. Conclusions
Acknowledgments
References
- Liu, I.M.; Yu, W.J.; Liou, S.S.; Tzeng, T.F.; Tsai, I.H.; Cheng, J.T. Role of alcohol in the induction of hepatic injury by chronic consumption of medicated wine. J. Food Drug Anal. 2007, 15, 466–471. [Google Scholar]
- Liu, J.H. Intervention for clinical syndromes and relevant indexes in patients with primary osteoporosis by anti-osteoporosis pill. Chin. J. Clin. Rehabil. 2006, 10, 13–15. [Google Scholar]
- Yip, W.W.; Burt, A.D. Alcoholic liver disease. Semin. Diagn. Pathol. 2006, 23, 149–160. [Google Scholar] [CrossRef]
- Beserra, A.M.; Calegari, P.I.; Souza Mdo, C.; Dos Santos, R.A.; Lima, J.C.; Silva, R.M.; Balogun, S.O.; Martins, D.T. Gastroprotective and ulcer-healing mechanisms of ellagic acid in experimental rats. J. Agric. Food Chem. 2011, 59, 6957–6965. [Google Scholar]
- Schneider, L.; Hackert, T.; Longerich, T.; Hartwig, W.; Fritz, S.; Krych, R.; Fortunato, F.; Gebhard, M.M.; Werner, J. Effects of gadolinium chloride and glycine on hepatic and pancreatic tissue damage in alcoholic pancreatitis. Pancreas 2010, 39, 502–509. [Google Scholar] [CrossRef]
- Li, Y.G.; Ji, D.F.; Chen, S.; Hu, G.Y. Protective effects of sericin protein on alcohol-mediated liver damage in mice. Alcohol Alcohol. 2008, 43, 246–253. [Google Scholar]
- Lee, T.Y.; Wang, G.J.; Chiu, J.H.; Lin, H.C. Long-term administration of Salvia miltiorrhiza ameliorates carbon tetrachloride-induced hepatic fibrosis in rats. J. Pharm. Pharmacol. 2003, 55, 1561–1568. [Google Scholar]
- Sang, I.L.; Hyo, J.K.; Boo, Y.C. Effect of green tea and (−)-epigallocatechin gallate on ethanol-induced toxicity in HepG2 cells. Phytother. Res. 2008, 22, 669–674. [Google Scholar] [CrossRef]
- Kundu, R.; Dasgupta, S.; Biswas, A.; Bhattacharya, A.; Pal, B.C.; Bandyopadhyay, D.; Bhattacharya, S. Cajanus cajan Linn. (Leguminosae) prevents alcohol-induced rat liver damage and augments cytoprotective function. J. Ethnopharmacol. 2008, 118, 440–447. [Google Scholar]
- Popovic, M.; Janicijevic-Hudomal, S.; Kaurinovic, B.; Rasic, J.; Trivic, S.; Vojnović, M. Antioxidant effects of some drugs on immobilization stress combined with cold restraint stress. Molecules 2009, 14, 4505–4516. [Google Scholar] [CrossRef]
- Yao, P.; Li, K.; Song, F.; Zhou, S.; Sun, X.; Zhang, X.; Nüssler, A.K.; Liu, L. Heme oxygenase-1 upregulated by Ginkgo biloba extract: Potential protection against ethanol-induced oxidative liver damage. Food Chem. Toxicol. 2007, 45, 1333–1342. [Google Scholar] [CrossRef]
- Hsieh, W.C. The Pharmaceutical Research of Wu-Chia-Pi. In Proceedings of the Symposium on Development and Utilization of Medicinal Plants, Taichung, Taiwan, 13 March 1999; pp. 125–159.
- Umulis, D.M.; Gürmen, N.M.; Singh, P.; Fogler, H.S. A physiologically based model for ethanol and acetaldehyde metabolism in human beings. Alcohol 2005, 35, 3–12. [Google Scholar] [CrossRef]
- Lopez, M.F.; Becker, H.C. Effect of pattern and number of chronic ethanol exposures on subsequent voluntary ethanol intake in C57BL/6J mice. Psychopharmacology 2005, 181, 688–696. [Google Scholar] [CrossRef]
- Gülçin, I.; Alici, H.A.; Cesur, M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem. Pharm. Bull. 2005, 53, 281–285. [Google Scholar] [CrossRef]
- Wang, K.T.; Chen, L.G.; Wu, C.H.; Chang, C.C.; Wang, C.C. Gastroprotective activity of atractylenolide III from Atractylodes ovata on ethanol-induced gastric ulcer in vitro and in vivo. J. Pharm. Pharmacol. 2010, 62, 381–388. [Google Scholar]
- Chen, X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn. Mag. 2010, 6, 135–141. [Google Scholar] [CrossRef]
- Cohen, J.A.; Kaplan, M.M. The SGOT/SGPT ratio. An indicator of alcoholic liver disease. Dig. Dis. Sci. 1979, 24, 835–838. [Google Scholar] [CrossRef]
- Sahreen, S.; Khan, M.R.; Khan, R.A. Hepatoprotective effects of methanol extract of Carissa opaca leaves on CCl4-induced damage in rat. BMC Complement. Altern. Med. 2011, 11, 48. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, T.; Ma, L.; Yan, M.; Zhao, Y.; Gu, Z.; Huang, Y. Protective effect of acteoside on immunological liver injury induced by bacillus calmette-guerin plus lipopolysaccharide. Planta Med. 2009, 75, 1463–1469. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Yan, J.; Zhao, X.; Sun, X.; Zhang, Y.; Guo, J.; Zhu, C. Acteoside protects human neuroblastoma SH-SY5Y cells against β-amyloid-induced cell injury. Brain Res. 2009, 1283, 139–147. [Google Scholar] [CrossRef]
- Rao, Y.K.; Fang, S.H.; Hsieh, S.C.; Yeh, T.H.; Tzeng, Y.M. The constituents of Anisomeles indica and their anti-inflammatory activities. J. Ethnopharmacol. 2009, 121, 292–296. [Google Scholar] [CrossRef]
- Sheu, M.J.; Chou, P.Y.; Cheng, H.C.; Wu, C.H.; Huang, G.J.; Wang, B.S.; Chen, J.S.; Chien, Y.C.; Huang, M.H. Analgesic and anti-inflammatory activities of a water extract of Trachelospermum jasminoides (Apocynaceae). J. Ethnopharmacol. 2009, 126, 332–338. [Google Scholar] [CrossRef]
- Son, Y.O.; Lee, K.Y.; Kook, S.H.; Lee, J.C.; Kim, J.G.; Jeon, Y.M.; Jang, Y.S. Selective effects of quercetin on the cell growth and antioxidant defense system in normal versus transformed mouse hepatic cell lines. Eur. J. Pharmacol. 2004, 502, 195–204. [Google Scholar] [CrossRef]
- Mukai, M.; Ozasa, K.; Hayashi, K.; Kawai, K. Various S-GOT/S-GPT ratios in nonviral liver disorders and related physical conditions and life-style. Dig. Dis. Sci. 2002, 47, 549–555. [Google Scholar] [CrossRef]
- Tseng, S.H.; Chien, T.Y.; Tzeng, C.F.; Lin, Y.H.; Wu, C.H.; Wang, C.C. Prevention of hepatic oxidative injury by Xiao-Chen-Chi-Tang in mice. J. Ethnopharmacol. 2007, 111, 232–239. [Google Scholar] [CrossRef]
- Wang, K.T.; Chen, L.G.; Chou, D.S.; Liang, W.L.; Wang, C.C. Anti-oxidative abilities of essential oils from Atractylodes ovata Rhizome. Evid. Based Complement. Alternat. Med. 2011, 2011, 204892. [Google Scholar]
- Jiang, Z.Y.; Woollard, A.C.S.; Wolff, S.P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990, 268, 69–71. [Google Scholar] [CrossRef]
- Sample Availability: Samples are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huan, S.K.-H.; Wang, K.-T.; Lee, C.-J.; Sung, C.-h.; Chien, T.-Y.; Wang, C.-C. Wu-Chia-Pi Solution Attenuates Carbon Tetrachloride-Induced Hepatic Injury through the Antioxidative Abilities of Its Components Acteoside and Quercetin. Molecules 2012, 17, 14673-14684. https://doi.org/10.3390/molecules171214673
Huan SK-H, Wang K-T, Lee C-J, Sung C-h, Chien T-Y, Wang C-C. Wu-Chia-Pi Solution Attenuates Carbon Tetrachloride-Induced Hepatic Injury through the Antioxidative Abilities of Its Components Acteoside and Quercetin. Molecules. 2012; 17(12):14673-14684. https://doi.org/10.3390/molecules171214673
Chicago/Turabian StyleHuan, Steven Kuan-Hua, Kun-Teng Wang, Chia-Jung Lee, Chun-hsien Sung, Ting-Yi Chien, and Ching-Chiung Wang. 2012. "Wu-Chia-Pi Solution Attenuates Carbon Tetrachloride-Induced Hepatic Injury through the Antioxidative Abilities of Its Components Acteoside and Quercetin" Molecules 17, no. 12: 14673-14684. https://doi.org/10.3390/molecules171214673