Fructose Might Contribute to the Hypoglycemic Effect of Honey
Abstract
:1. Introduction
2. Overview of Fructose (and in Relation to Honey) in the Gastrointestinal Tract (GIT)
3. Overview of Fructose (and other Monosaccharides) in the Liver
4. Effects of Fructose in the Liver
5. Effects of Fructose in the Pancreas
6. Effects of Fructose on Glycemic Control and Glucose-Regulating Hormones
7. Effects of Fructose on Appetite-Regulating Hormones
8. Effects of Fructose on Body Weight, Food Intake, Oxidation of Carbohydrate and Energy Expenditure
9. Effects of Honey which are Similar to Those of Fructose
10. Conclusions and Future Perspectives
Acknowledgments
Conflict of Interest
References
- Tan, H.T.; Rahman, R.A.; Gan, S.H.; Halim, A.S.; Hassan, S.A.; Sulaiman, S.A.; Kirnpal-Kaur, B. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. BMC Complement. Altern. Med. 2009, 9, 34. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.; Sirajudeen, K.N.; Salleh, M.S.; Gurtu, S. Honey supplementation elicits antihypertensive effect in spontaneously hypertensive rats via amelioration of renal oxidative stress. Oxid. Med. Cell. Longev. 2012, 2012, 1–14. [Google Scholar]
- Al-Waili, N.S.; Saloom, K.Y.; Al-Waili, T.N.; Al-Waili, A.N.; Akmal, M.; Al-Waili, F.S.; Al-Waili, H.N. Influence of various diet regimens on deterioration of hepatic function and hematological parameters following carbon tetrachloride: A potential protective role of natural honey. Nat. Prod. Res. 2006, 20, 1258–1264. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Gurtu, S.; Sulaiman, S.A.; Wahab, M.S.; Sirajudeen, K.N.; Salleh, M.S. Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats. Int. J. Vitam. Nutr. Res. 2010, 80, 74–82. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar]
- Ischayek, J.I.; Kern, M. US honeys varying in glucose and fructose content elicit similar glycemic indexes. J. Am. Diet. Assoc. 2006, 106, 1260–1262. [Google Scholar] [CrossRef]
- Deibert, P.; Konig, D.; Kloock, B.; Groenefeld, M.; Berg, A. Glycaemic and insulinaemic properties of some German honey varieties. Eur. J. Clin. Nutr. 2010, 64, 762–764. [Google Scholar] [CrossRef]
- Bahrami, M.; Ataie-Jafari, A.; Hosseini, S.; Foruzanfar, M.H.; Rahmani, M.; Pajouhi, M. Effects of natural honey consumption in diabetic patients: An 8-week randomized clinical trial. Int. J. Food Sci. Nutr. 2009, 60, 618–626. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.; Sirajudeen, K.N.; Salleh, M.S.; Gurtu, S. Glibenclamide or metformin combined with honey improves glycemic control in streptozotocin-induced diabetic rats. Int. J. Biol. Sci. 2011, 7, 244–252. [Google Scholar]
- Münstedt, K.; Bohme, M.; Hauenschild, A.; Hrgovic, I. Consumption of rapeseed honey leads to higher serum fructose levels compared with analogue glucose/fructose solutions. Eur. J. Clin. Nutr. 2011, 65, 77–80. [Google Scholar] [CrossRef]
- Bantle, J.P. Dietary fructose and metabolic syndrome and diabetes. J. Nutr. 2009, 139, 1263–1268. [Google Scholar] [CrossRef]
- Rumessen, J.J. Fructose and related food carbohydrates. Sources, intake, absorption, and clinical implications. Scand. J. Gastroenterol. 1992, 27, 819–828. [Google Scholar] [CrossRef]
- Park, Y.K.; Yetley, E.A. Intakes and food sources of fructose in the United States. Am. J. Clin. Nutr. 1993, 58, 737S–747S. [Google Scholar]
- Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef]
- Latulippe, M.E.; Skoog, S. Fructose malabsorption and intolerance: Effects of fructose with and without simultaneous glucose ingestion. Crit. Rev. Food. Sci. Nutr. 2011, 51, 583–592. [Google Scholar] [CrossRef]
- Al-Waili, N. Intrapulmonary administration of natural honey solution, hyperosmolar dextrose or hypoosmolar distill water to normal individuals and to patients with type-2diabetes mellitus or hypertension: Their effects on blood glucose level, plasma insulin and C-peptide, blood pressure and peaked expiratory flow rate. Eur. J. Med. Res. 2003, 8, 295–303. [Google Scholar]
- Cortés, M.E.; Vigil, P.; Montenegro, G. The medicinal value of honey: A review on its benefits to humanhealth, with a special focus on its effects on glycemic regulation. Cien. Inv. Agr. 2011, 38, 303–317. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.; Sirajudeen, K.N.; Salleh, M.S.; Gurtu, S. Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. Ann. Endocrinol. (Paris) 2010, 71, 291–296. [Google Scholar] [CrossRef]
- Wright, E.M.; Martin, M.G.; Turk, E. Intestinal absorption in health and disease-sugars. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 943–956. [Google Scholar] [CrossRef]
- Schurmann, A. Insight into the “odd” hexose transporters GLUT3, GLUT5, and GLUT7. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E225–E226. [Google Scholar] [CrossRef]
- Stelmanskan, E. The important role of GLUT2 in intestinal sugar transport and absorption. Postepy Biochem. 2009, 55, 385–387. [Google Scholar]
- Henry, R.R.; Crapo, P.A.; Thorburn, A.W. Current issues in fructose metabolism. Annu. Rev. Nutr. 1991, 11, 21–39. [Google Scholar] [CrossRef]
- Douard, V.; Ferraris, R.P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E227–E237. [Google Scholar] [CrossRef]
- Ushijima, K.; Riby, J.E.; Fujisawa, T.; Kretchmer, N. Absorption of fructose by isolated small intestine of rats is via a specific saturable carrier in the absence of glucose and by the disaccharidase-related transport system in the presence of glucose. J. Nutr. 1995, 125, 2156–2164. [Google Scholar]
- Jones, H.F.; Butler, R.N.; Brooks, D.A. Intestinal fructose transport and malabsorption in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G202–G206. [Google Scholar] [CrossRef]
- Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar]
- Kajiwara, S.; Gandhi, H.; Ustunol, Z. Effect of honey on the growth of and acid production by human intestinal Bifidobacterium spp.: An in vitro comparison with commercial oligosaccharides and inulin. J. Food Prot. 2002, 65, 214–218. [Google Scholar]
- Klip, A.; Vranic, M. Muscle, liver, and pancreas: Three Musketeers fighting to control glycemia. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E1141–E1143. [Google Scholar] [CrossRef]
- Mayes, P.A. Intermediary metabolism of fructose. Am. J. Clin. Nutr. 1993, 58, 754–765. [Google Scholar]
- Cherrington, A.D. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes 1999, 48, 1198–1214. [Google Scholar] [CrossRef]
- Watford, M. Small amounts of dietary fructose dramatically increase hepatic glucose uptake through a novel mechanism of glucokinase activation. Nutr. Rev. 2002, 60, 253–257. [Google Scholar] [CrossRef]
- Youn, J.H.; Kaslow, H.R.; Bergman, R.N. Fructose effect to suppress hepatic glycogen degradation. J. Biol. Chem. 1987, 262, 11470–11477. [Google Scholar]
- Ciudad, C.J.; Carabaza, A.; Guinovart, J.J. Glycogen synthesis from glucose and fructose in hepatocytes from diabetic rats. Arch. Biochem. Biophys. 1988, 267, 437–447. [Google Scholar] [CrossRef]
- Youn, J.H.; Youn, M.S.; Bergman, R.N. Synergism of glucose and fructose in net glycogen synthesis in perfused rat livers. J. Biol. Chem. 1986, 261, 15960–15969. [Google Scholar]
- Shiota, M.; Moore, M.C.; Galassetti, P.; Monohan, M.; Neal, D.W.; Shulman, G.I.; Cherrington, A.D. Inclusion of low amounts of fructose with an intraduodenal glucose load markedly reduces postprandial hyperglycemia and hyperinsulinemia in the conscious dog. Diabetes 2002, 51, 469–478. [Google Scholar]
- Eraslan, G.; Kanbur, M.; Silici, S.; Karabacak, M. Beneficial effect of pine honey on trichlorfon induced some biochemical alterations in mice. Ecotoxicol. Environ. Saf. 2010, 73, 1084–1091. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.; Salam, S.K.; Salleh, M.S.; Gurtu, S. Hepatoprotective effect of tualang honey supplementation in streptozotocin-induced diabetic rats. Int. J. Appl. Res. Nat. Prod. 2012, 4, 37–41. [Google Scholar]
- Fillat, C.; Gómez-Foix, A.M.; Guinovart, J.J. Stimulation of glucose utilization by fructose in isolated rat hepatocytes. Arch. Biochem. Biophys. 1993, 300, 564–569. [Google Scholar] [CrossRef]
- Phillips, J.W.; Berry, M.N. Long-term maintenance of low concentrations of fructose for the study of hepatic glucose phosphorylation. Biochem. J. 1999, 337, 497–501. [Google Scholar] [CrossRef]
- Wei, Y.; Bizeau, M.E.; Pagliassotti, M.J. An acute increase in fructose concentration increases hepatic glucose-6-phosphatase mRNA via mechanisms that are independent of glycogen synthase kinase-3 in rats. J. Nutr. 2004, 134, 545–551. [Google Scholar]
- van Schaftingen, E.; Davies, D.R. Fructose administration stimulates glucose phosphorylation in the livers of anesthetized rats. FASEB J. 1991, 5, 326–330. [Google Scholar]
- Winnick, J.J.; An, Z.; Moore, M.C.; Ramnanan, C.J.; Farmer, B.; Shiota, M.; Cherrington, A.D. A physiological increase in the hepatic glycogen level does not affect the response of net hepatic glucose uptake to insulin. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E358–E366. [Google Scholar] [CrossRef]
- Iburi, T.; Izumiyama, H.; Hirata, Y. Endocrine glands of pancreas. Nihon Rinsho 2011, 69, 95–99. [Google Scholar]
- Grodsky, G.M.; Batts, A.A.; Bennett, L.L.; Vcella, C.; McWilliams, N.B.; Smith, D.F. Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am. J. Physiol. 1963, 205, 638–644. [Google Scholar]
- Lambert, A.E.; Junod, A.; Stauffahcer, W.; Jeanrenaud, B.; Renold, A.E. Organ culture of fetal rat pancreas. I. Insulin release induced by caffeine and by sugars and some derivatives. Biochim. Biophys. Acta 1969, 184, 529–539. [Google Scholar] [CrossRef]
- Curry, D.L.; Curry, K.P.; Gomez, M. Fructose potentiation of insulin secretion. Endocrinology 1972, 91, 1493–1498. [Google Scholar] [CrossRef]
- Curry, D.L. Fructose potentiation of mannose-induced insulin secretion. Am. J. Physiol. 1974, 226, 1073–1076. [Google Scholar]
- Zawalich, W.S.; Rognstad, R.; Pagliara, A.S.; Matschinsky, F.M. A comparison of the utilization rates and hormone-releasing actions of glucose, mannose, and fructose in isolated pancreatic islets. J. Biol. Chem. 1977, 252, 8519–8523. [Google Scholar]
- Prieto, P.G.; Cancelas, J.; Villanueva-Penacarrillo, M.L.; Valverde, I.; Malaisse, W.J. Plasma D-glucose, D-fructose and insulin responses after oral administration of D-glucose, D-fructose and sucrose to normal rats. J. Am. Coll. Nutr. 2004, 23, 414–419. [Google Scholar]
- Hara, E.; Saito, M. Impaired insulin secretion after oral sucrose and fructose in rats. Endocrinology 1981, 109, 966–970. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, Y.J.; Kim, M.K. Effect of fructose or sucrose feeding with different levels on oral glucose tolerance test in normal and type 2 diabetic rats. Nutr. Res. Pract. 2008, 2, 252–258. [Google Scholar] [CrossRef]
- Vaisman, N.; Niv, E.; Izkhakov, Y. Catalytic amounts of fructose may improve glucose tolerance in subjects with uncontrolled non-insulin-dependent diabetes. Clin. Nutr. 2006, 25, 617–621. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Griffen, S.C.; Bremer, A.A.; Vink, R.G.; Schaefer, E.J.; Nakajima, K.; Schwarz, J.M.; Beysen, C.; Berglund, L.; Keim, N.L.; et al. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions. Am. J. Clin. Nutr. 2011, 94, 112–119. [Google Scholar] [CrossRef]
- Osei, K.; Falko, J.M.; Fields, P.G.; Bossetti, B.; O'Dorisio, T.M. The effects of carbohydrate-enriched meals on glucose turnover and metabolic clearance rates of glucose in type 2 diabetic patients. Diabetologia 1986, 29, 100–105. [Google Scholar] [CrossRef]
- Koh, E.T.; Ard, N.F.; Mendoza, F. Effects of fructose feeding on blood parameters and blood pressure in impaired glucose-tolerant subjects. J. Am. Diet. Assoc. 1988, 88, 932–938. [Google Scholar]
- Bantle, J.P.; Swanson, J.E.; Thomas, W.; Laine, D.C. Metabolic effects of dietary fructose in diabetic subjects. Diabetes Care 1992, 15, 1468–1476. [Google Scholar]
- Heacock, P.M.; Hertzler, S.R.; Wolf, B.W. Fructose prefeeding reduces the glycemic response to a high-glycemic index, starchy food in humans. J. Nutr. 2002, 132, 2601–2604. [Google Scholar]
- Macdonald, I.; Pacy, D. Some immediate metabolic responses in man to fructose ingestion [proceedings]. Proc. Nutr. Soc. 1976, 35, 69A–70A. [Google Scholar] [CrossRef]
- Macdonald, I.; Keyser, A.; Pacy, D. Some effects, in man, of varying the load of glucose, sucrose, fructose, or sorbitol on various metabolites in blood. Am. J. Clin. Nutr. 1978, 31, 1305–1311. [Google Scholar]
- Petersen, K.F.; Laurent, D.; Yu, C.; Cline, G.W.; Shulman, G.I. Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes 2001, 50, 1263–1268. [Google Scholar] [CrossRef]
- Teff, K.L.; Elliott, S.S.; Tschop, M.; Kieffer, T.J.; Rader, D.; Heiman, M.; Townsend, R.R.; Keim, N.L.; D'Alessio, D.; Havel, P.J. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metab. 2004, 89, 2963–2972. [Google Scholar]
- Ionescu-Tirgoviste, C.; Popa, E.; Sintu, E.; Mihalache, N.; Cheta, D.; Mincu, I. Blood glucose and plasma insulin responses to various carbohydrates in type 2 (non-insulin-dependent) diabetes. Diabetologia 1983, 24, 80–84. [Google Scholar] [CrossRef]
- Sunehag, A.L.; Toffolo, G.; Campioni, M.; Bier, D.M.; Haymond, M.W. Short-term high dietary fructose intake had no effects on insulin sensitivity and secretion or glucose and lipid metabolism in healthy, obese adolescents. J. Pediatr. Endocrinol. Metab. 2008, 21, 225–235. [Google Scholar]
- Ngo Sock, E.T.; Le, K.A.; Ith, M.; Kreis, R.; Boesch, C.; Tappy, L. Effects of a short-term overfeeding with fructose or glucose in healthy young males. Br. J. Nutr. 2009, 103, 939–943. [Google Scholar]
- Swanson, J.E.; Laine, D.C.; Thomas, W.; Bantle, J.P. Metabolic effects of dietary fructose in healthy subjects. Am. J. Clin. Nutr. 1992, 55, 851–856. [Google Scholar]
- Lawrence, J.R.; Gray, C.E.; Grant, I.S.; Ford, J.A.; McIntosh, W.B.; Dunnigan, M.G. The insulin response to intravenous fructose in maturity-onset diabetes mellitus and in normal subjects. Diabetes 1980, 29, 736–741. [Google Scholar]
- Reiser, S.; Powell, A.S.; Yang, C.Y.; Canary, J.J. An insulinogenic effect of oral fructose in humans during postprandial hyperglycemia. Am. J. Clin. Nutr. 1987, 45, 580–587. [Google Scholar]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 2009, 119, 1322–1334. [Google Scholar] [CrossRef]
- Le, K.A.; Ith, M.; Kreis, R.; Faeh, D.; Bortolotti, M.; Tran, C.; Boesch, C.; Tappy, L. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr. 2009, 89, 1760–1765. [Google Scholar] [CrossRef]
- Klok, M.D.; Jakobsdottir, S.; Drent, M.L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obes. Rev. 2007, 8, 21–34. [Google Scholar] [CrossRef]
- Teff, K.L.; Grudziak, J.; Townsend, R.R.; Dunn, T.N.; Grant, R.W.; Adams, S.H.; Keim, N.L.; Cummings, B.P.; Stanhope, K.L.; Havel, P.J. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: Influence of insulin resistance on plasma triglyceride responses. J. Clin. Endocrinol. Metab. 2009, 94, 1562–1569. [Google Scholar] [CrossRef]
- Havel, P.J. Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr. Rev. 2005, 63, 133–157. [Google Scholar] [CrossRef]
- Suga, A.; Hirano, T.; Kageyama, H.; Osaka, T.; Namba, Y.; Tsuji, M.; Miura, M.; Adachi, M.; Inoue, S. Effects of fructose and glucose on plasma leptin, insulin, and insulin resistance in lean and VMH-lesioned obese rat. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E677–E683. [Google Scholar]
- Le, K.A.; Faeh, D.; Stettler, R.; Ith, M.; Kreis, R.; Vermathen, P.; Boesch, C.; Ravussin, E.; Tappy, L. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am. J. Clin. Nutr. 2006, 84, 1374–1379. [Google Scholar]
- Vasselli, J.R. Fructose-induced leptin resistance: Discovery of an unsuspected form of the phenomenon and its significance. Focus on “Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding,” by Shapiro et al. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1365–R1369. [Google Scholar] [CrossRef]
- Shapiro, A.; Mu, W.; Roncal, C.; Cheng, K.Y.; Johnson, R.J.; Scarpace, P.J. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1370–R1375. [Google Scholar] [CrossRef]
- Huynh, M.; Luiken, J.J.; Coumans, W.; Bell, R.C. Dietary fructose during the suckling period increases body weight and fatty acid uptake into skeletal muscle in adult rats. Obesity 2008, 16, 1755–1762. [Google Scholar] [CrossRef]
- Bocarsly, M.E.; Powell, E.S.; Avena, N.M.; Hoebel, B.G. High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levels. Pharmacol. Biochem. Behav. 2010, 97, 101–106. [Google Scholar] [CrossRef]
- Jürgens, H.; Haass, W.; Castañeda, T.R.; Schürmann, A.; Koebnick, C.; Dombrowski, F.; Otto, B.; Nawrocki, A.R.; Scherer, P.E.; Spranger, J.; et al. Consuming fructose-sweetened beverages increases body adiposity in mice. Obes. Res. 2005, 13, 1146–1156. [Google Scholar] [CrossRef]
- Dolan, L.C.; Potter, S.M.; Burdock, G.A. Evidence-based review on the effect of normal dietary consumption of fructose on blood lipids and body weight of overweight and obese individuals. Crit. Rev. Food. Sci. Nutr. 2010, 50, 889–918. [Google Scholar] [CrossRef]
- Madero, M.; Arriaga, J.C.; Jalal, D.; Rivard, C.; McFann, K.; Pérez-Méndez, O.; Vázquez, A.; Ruiz, A.; Lanaspa, M.A.; Jiménez, C.R.; et al. The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose diet, on weight loss and metabolic syndrome parameters: A randomized controlled trial. Metabolism 2011, 60, 1551–1559. [Google Scholar]
- Ebbeling, C.B.; Feldman, H.A.; Osganian, S.K.; Chomitz, V.R.; Ellenbogen, S.J.; Ludwig, D.S. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: A randomized, controlled pilot study. Pediatrics 2006, 117, 673–680. [Google Scholar] [CrossRef]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar]
- Messier, C.; Whately, K.; Liang, J.; Du, L.; Puissant, D. The effects of a high-fat, high-fructose, and combination diet on learning, weight, and glucose regulation in C57BL/6 mice. Behav. Brain Res. 2007, 178, 139–145. [Google Scholar] [CrossRef]
- Kvaavik, E.; Andersen, L.F.; Klepp, K.I. The stability of soft drinks intake from adolescence to adult age and the association between long-term consumption of soft drinks and lifestyle factors and body weight. Public Health Nutr. 2005, 8, 149–157. [Google Scholar]
- Thibault, L. Dietary carbohydrates: Effects on self-selection, plasma glucose and insulin, and brain indoleaminergic systems in rat. Appetite 1994, 23, 275–286. [Google Scholar] [CrossRef]
- Meirelles, C.J.; Oliveira, L.A.; Jordão, A.A.; Navarro, A.M. Metabolic effects of the ingestion of different fructose sources in rats. Exp. Clin. Endocrinol. Diabetes 2011, 119, 218–220. [Google Scholar] [CrossRef]
- Rodin, J. Effects of pure sugar vs. mixed starch fructose loads on food intake. Appetite 1991, 17, 213–219. [Google Scholar] [CrossRef]
- Rodin, J. Comparative effects of fructose, aspartame, glucose, and water preloads on calorie and macronutrient intake. Am. J. Clin. Nutr. 1990, 51, 428–435. [Google Scholar]
- Anderson, G.H.; Woodend, D. Effect of glycemic carbohydrates on short-term satiety and food intake. Nutr. Rev. 2003, 61, S17–S26. [Google Scholar] [CrossRef]
- Tappy, L.; Randin, J.P.; Felber, J.P.; Chiolero, R.; Simonson, D.C.; Jequier, E.; DeFronzo, R.A. Comparison of thermogenic effect of fructose and glucose in normal humans. Am. J. Physiol. 1986, 250, E718–E724. [Google Scholar]
- Simonson, D.C.; Tappy, L.; Jequier, E.; Felber, J.P.; DeFronzo, R.A. Normalization of carbohydrate-induced thermogenesis by fructose in insulin-resistant states. Am. J. Physiol. 1988, 254, E201–E207. [Google Scholar]
- Schwarz, J.M.; Schutz, Y.; Froidevaux, F.; Acheson, K.J.; Jeanpretre, N.; Schneider, H.; Felber, J.P.; Jequier, E. Thermogenesis in men and women induced by fructose vs glucose added to a meal. Am. J. Clin. Nutr. 1989, 49, 667–674. [Google Scholar]
- Blaak, E.E.; Saris, W.H. Postprandial thermogenesis and substrate utilization after ingestion of different dietary carbohydrates. Metabolism 1996, 45, 1235–1242. [Google Scholar] [CrossRef]
- Jentjens, R.L.; Underwood, K.; Achten, J.; Currell, K.; Mann, C.H.; Jeukendrup, A.E. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J. Appl. Physiol. 2006, 100, 807–816. [Google Scholar]
- Robert, S.D.; Ismail, A.A. Two varieties of honey that are available in Malaysia gave intermediate glycemic index values when tested among healthy individuals. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2009, 153, 145–147. [Google Scholar] [CrossRef]
- Münstedt, K.; Sheybani, B.; Hauenschild, A.; Brüggmann, D.; Bretzel, R.G.; Winter, D. Effects of basswood honey, honey-comparable glucose-fructose solution, and oral glucose tolerance test solution on serum insulin, glucose, and C-peptide concentrations in healthy subjects. J. Med. Food 2008, 11, 424–428. [Google Scholar] [CrossRef]
- Al-Waili, N.S. Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: Comparison with dextrose and sucrose. J. Med. Food 2004, 7, 100–107. [Google Scholar] [CrossRef]
- Ahmad, A.; Azim, M.K.; Mesaik, M.A.; Khan, R.A. Natural honey modulates physiological glycemic response compared to simulated honey and D-glucose. J. Food Sci. 2008, 73, H165–H167. [Google Scholar] [CrossRef]
- Agrawal, O.P.; Pachauri, A.; Yadav, H.; Urmila, J.; Goswamy, H.M.; Chapperwal, A.; Bisen, P.S.; Prasad, G.B. Subjects with impaired glucose tolerance exhibit a high degree of tolerance to honey. J. Med. Food 2007, 10, 473–478. [Google Scholar] [CrossRef]
- Bornet, F.; Haardt, M.J.; Costagliola, D.; Blayo, A.; Slama, G. Sucrose or honey at breakfast have no additional acute hyperglycaemic effect over an isoglucidic amount of bread in type 2 diabetic patients. Diabetologia 1985, 28, 213–217. [Google Scholar]
- Katsilambros, N.L.; Philippides, P.; Touliatou, A.; Georgakopoulos, K.; Kofotzouli, L.; Frangaki, D.; Siskoudis, P.; Marangos, M.; Sfikakis, P. Metabolic effects of honey (alone or combined with other foods) in type II diabetics. Acta Diabetol. 1988, 25, 197–203. [Google Scholar] [CrossRef]
- Fasanmade, A.A.; Alabi, O.T. Differential effect of honey on selected variables in alloxan-induced and fructose-induced diabetic rats. Afr. J. Biomed. Res. 2008, 11, 191–196. [Google Scholar]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.; Sirajudeen, K.N.S.; Salleh, M.S.; Gurtu, S. Comparison of antioxidant effects of honey, glibenclamide, metformin, and their combinations in the kidneys of streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2011, 12, 829–843. [Google Scholar]
- Chepulis, L.; Starkey, N. The long-term effects of feeding honey compared with sucrose and a sugar-free diet on weight gain, lipid profiles, and DEXA measurements in rats. J. Food Sci. 2008, 73, H1–H7. [Google Scholar] [CrossRef]
- Nemoseck, T.M.; Carmody, E.G.; Furchner-Evanson, A.; Gleason, M.; Li, A.; Potter, H.; Rezende, L.M.; Lane, K.J.; Kern, M. Honey promotes lower weight gain, adiposity, and triglycerides than sucrose in rats. Nutr. Res. 2011, 31, 55–60. [Google Scholar] [CrossRef]
- Chepulis, L.M. The effect of honey compared to sucrose, mixed sugars, and a sugar-free diet on weight gain in young rats. J. Food Sci. 2007, 72, S224–S229. [Google Scholar] [CrossRef]
- Yaghoobi, N.; Al-Waili, N.; Ghayour-Mobarhan, M.; Parizadeh, S.M.; Abasalti, Z.; Yaghoobi, Z.; Yaghoobi, F.; Esmaeili, H.; Kazemi-Bajestani, S.M.; Aghasizadeh, R.; et al. Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. Sci. World J. 2008, 8, 463–469. [Google Scholar] [CrossRef]
- Larson-Meyer, D.E.; Willis, K.S.; Willis, L.M.; Austin, K.J.; Hart, A.M.; Breton, A.B.; Alexander, B.M. Effect of honey versus sucrose on appetite, appetite-regulating hormones, and postmeal thermogenesis. J. Am. Coll. Nutr. 2010, 29, 482–493. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A. Fructose Might Contribute to the Hypoglycemic Effect of Honey. Molecules 2012, 17, 1900-1915. https://doi.org/10.3390/molecules17021900
Erejuwa OO, Sulaiman SA, Wahab MSA. Fructose Might Contribute to the Hypoglycemic Effect of Honey. Molecules. 2012; 17(2):1900-1915. https://doi.org/10.3390/molecules17021900
Chicago/Turabian StyleErejuwa, Omotayo O., Siti A. Sulaiman, and Mohd S. Ab Wahab. 2012. "Fructose Might Contribute to the Hypoglycemic Effect of Honey" Molecules 17, no. 2: 1900-1915. https://doi.org/10.3390/molecules17021900
APA StyleErejuwa, O. O., Sulaiman, S. A., & Wahab, M. S. A. (2012). Fructose Might Contribute to the Hypoglycemic Effect of Honey. Molecules, 17(2), 1900-1915. https://doi.org/10.3390/molecules17021900