In Vitro Antibacterial and Time-Kill Assessment of Crude Methanolic Stem Bark Extract of Acacia mearnsii De Wild against Bacteria in Shigellosis
Abstract
:1. Introduction
2. Results and Discussion
Tetracycline (µg/mL) | Methanolic extract (mg/mL) | |||
---|---|---|---|---|
MIC | MIC | MBC | MIC/MBC | |
Escherichia coli (ATCC 8739) | 0.977 | 0.3125 | 0.625 | 2 |
Bacillus pumilus (ATCC 14884) | 3.125 | 0.3125 | 0.625 | 2 |
Klebsiella pneumoniae (ATCC 10031) | 0.488 | 0.1563 | 0.1563 | 1 |
Proteus vulgaris (ATCC 6830) | 7.8125 | 0.1563 | 0.625 | 4 |
Proteus vulgaris (CSIR 0030) | 0.488 | 0.0391 | 0.1563 | 2 |
Acinetobacter calcaoceuticus UP | 125 | 0.1562 | 0.3125 | 2 |
Acinetobacter calcaoceuticus anitratis CSIR | 0.0305 | 0.3125 | 0.625 | 2 |
Shigella flexneri KZN | 0.1966 | 0.0391 | 0.0781 | 2 |
Micrococcus luteus | 31.25 | 0.078 | 0.1563 | 2 |
Enterococcus faecalis KZN | 15.625 | 0.156 | 0.3125 | 2 |
Staphylococcus aureus OK1 | 0.976 | 0.1563 | 0.625 | 4 |
Staphylococcus aureus OK2b | 0.1966 | 0.625 | 1.25 | 2 |
Staphylococcus aureus OK3 | 0.1953 | 0.3125 | 0.625 | 2 |
Salmonella typhi (ATCC 13311) | 0.0305 | 0.3125 | 0.3125 | 1 |
Log10Kill | Log10Kill | Log10Kill | |||||||
---|---|---|---|---|---|---|---|---|---|
½ X MIC | MIC | 2 X MIC | |||||||
0 h | 4 h | 8 h | 0 h | 4 h | 8 h | 0 h | 4 h | 8 h | |
Escherichia coli (ATCC 8739) | 2.083 | 3.131 | 4.248 | 2.199 | 1.294 | 1.125 | 2.340 | 0.121 | −1.542 |
Bacillus pumilus (ATCC 14884) | 2.212 | 3.422 | 4.449 | 2.392 | 2.167 | 1.033 | 2.422 | 0.111 | −1.815 |
Klebsiella pneumoniae (ATCC 10031) | 2.170 | 3.386 | 4.292 | 2.207 | 1.121 | 0.427 | 2.185 | −1.456 | −2.921 |
Proteus vulgaris (ATCC 6830) | 2.164 | 3.401 | 4.468 | 2.217 | 1.187 | 0.274 | 2.200 | 1.132 | −1.951 |
Proteus vulgaris (CSIR 0030) | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Acinetobacter calcaoceuticus UP | 2.091 | 2.237 | 3.427 | 2.375 | 1.185 | 0.233 | 2.345 | −1.0915 | −2.638 |
Acinetobacter calcaoceuticus anitratis CSIR | 2.276 | 3.324 | 4.519 | 2.354 | 1.199 | 0.122 | 2.375 | −0.951 | −2.387 |
Shigella flexneri KZN | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Micrococcus luteus | 2.193 | 2.093 | 3.137 | 2.241 | 1.420 | 0.121 | 2.210 | 0.292 | −2.444 |
Enterococcus faecalis KZN | 2.272 | 2.121 | 3.179 | 2.272 | 1.358 | 0.246 | 2.265 | 0.130 | −2.246 |
Staphylococcus aureus OK1 | 2.386 | 2.203 | 3.322 | 2.268 | 2.140 | 1.032 | 2.321 | 1.083 | −1.614 |
Staphylococcus aureus OK2b | 2.234 | 2.025 | 3.340 | 2.336 | 1.137 | 0.053 | 2.303 | 1.358 | −1.287 |
Staphylococcus aureus OK3 | 3.342 | 4.690 | 6.633 | 3.167 | 2.230 | 1.447 | 3.248 | 1.916 | 1.062 |
Salmonella typhi (ATCC 13311) | 2.292 | 2.328 | 3.155 | 2.270 | 2.201 | 1.274 | 2.288 | 2.185 | −0.727 |
3. Experimental
3.1. Collection of Plant Material
3.2. Extract Preparation
3.3. Test Organisms and Bacterial Inocula Preparation
3.4. Antimicrobial Assay by Agar Diffusion Method (Inhibition Zones)
3.5. Macrobroth Dilution for Minimum Inhibitory Concentration (MIC)
3.6. Determination of Minimum Bactericidal Concentrations (MBC)
3.7. Determination of Rate of Kill
4. Conclusions
Acknowledgements
- Sample Availability: Contact the authors.
References and Notes
- Bastos, F.C.; Loureiro, E.C. Antimicrobial Resistance of Shigella spp. isolated in the State of Pará, Brazil. Rev. Soc. Bras. Med. Trop. 2011, 44, 607–610. [Google Scholar]
- Gupta, S.; Mishra, B.; Muralidharan, S.; Srinivasa, H. Ceftriaxone resistant Shigella flexneri, an emerging problem. Indian J. Med. Sci. 2010, 64, 553–556. [Google Scholar]
- Huang, I.F.; Chiu, C.H.; Wang, M.H.; Wu, C.Y.; Hsieh, K.S.; Chiou, C.C. Outbreak of dysentery associated with Ceftriaxone-resistant Shigella sonnei: First report of Plasmid-Mediated CMY-2-Type AmpC ß-Lactamase resistance in S. sonnei. J. Clin. Microbiol. 2005, 43, 2608–2612. [Google Scholar] [CrossRef]
- Ashkenazi, S. Shigella infections in children: new insights. Semin. Pediatr. Infect. Dis. 2004, 15, 246–252. [Google Scholar] [CrossRef]
- Chattopadhyay, U.K.; Gupta, S.; Dutta, S. Search for shiga toxin producing Escherichia coli (STEC) including 0157: H7 strains in and around Kolkata. Indian J. Med. Microbiol. 2003, 21, 17–20. [Google Scholar]
- Tayung, K.; Kar, A. Antimicrobial activity of Thalictrum javanicum root extract against certain human pathogen. J. Curr. Sci. 2005, 7, 341–345. [Google Scholar]
- Barman, S.; Saha, D.R.; Ramamurthy, T.; Koley, H. Development of a new guinea-pig model of shigellosis. FEMS Immunol. Med. Mic. 2011, 62, 304–314. [Google Scholar] [CrossRef]
- Vinh, H.; Anh, V.T.; Anh, N.D.; Campbell, J.I.; Hoang, N.V.; Nga, T.V.; Nhu, N.T.; Minh, P.V.; Thuy, C.T.; Duy, P.T.; et al. A multi-center randomized trial to assess the efficacy of gatifloxacin versus ciprofloxacin for the treatment of shigellosis in Vietnamese children. PLoS Negl. Trop. Dis. 2011, 5, e1264. [Google Scholar]
- Bangtrakulnonth, A.; Vieira, A.R.; Lo Fo Wong, D.M.; Pornreongwong, S.; Pulsrikarn, C.; Sawanpanyalert, P.; Hendriksen, R.S.; Aarestrup, F.M. Shigella from humans in Thailand during 1993 to 2006: Spatial-time trends in species and serotype distribution. Foodborne Pathog. Dis. 2008, 5, 773–784. [Google Scholar] [CrossRef]
- Riley, L.W.; Remis, R.S.; Helgerson, S.D.; McGee, H.B.; Wells, J.G.; Davis, B.R.; Bebert, R.J.; Olcott, E.S.; Johnsosn, L.M.; Hargrett, N.T.; et al. Haemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 1983, 308, 681–685. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Ram, P.K.; Crump, J.A.; Gupta, S.K.; Miller, M.A.; Mintz, E.D. Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984-2005. Epidemiol. Infect. 2008, 136, 577–603. [Google Scholar]
- Kotloff, K.L.; Winickoff, J.P.; Ivanoff B, Clemens, J.D.; Swerdlow, D.L.; Sansonetti P.J.; Adak, G.K.; Levine, M.M. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 1999, 77, 651–666. [Google Scholar]
- Niyogi, S.K. Shigellosis. J. Microbiol. 2005, 43, 133–143. [Google Scholar]
- Diarrhoeal disease due to Shigella disease. In Vaccines, Immunization and Biologicals; World Health Organization: Geneva, Switzerland, 1998; pp. 1–5.
- MoezArdalan, K.; Zali, M.R.; Soltan-Dallal, M.M.; Hemami, M.R.; Salmanzadeh-Ahrabi, S. Prevalence and pattern of antimicrobial resistance of Shigella species among patients with acute diarrhoea in Karaj, Tehran, Iran. J. Health Popul. Nutr. 2003, 21, 6–102. [Google Scholar]
- Lee, H.; Kotloff, K.; Chukaserm, P.; Samosornsuk, S.; Chompook, P.; Deen, J.L.; Von Seidlein, L.; Clemens, J.D.; Wanpen, C. Shigellosis remains an important problem in children less than 5 years of age in Thailand. Epidemiol. Infect. 2005, 133, 469–474. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tao, F.; Xiao, D.; Lee, H.; Deen, J.; Gong, J.; Zhao, Y.; Zhou, W.; Li, W.; Shen, B.; et al. Trend and disease burden of bacillary dysentery in china (1991-2000). Bull. World Health Organ. 2006, 84, 561–568. [Google Scholar] [CrossRef]
- Wang, X.Y.; Du, L.; Von Seidlein, L.; Xu, Z.Y.; Zhang, Y.L.; Hao, Z.Y.; Han, O.P.; Ma, J.C.; Lee, H.J.; Ali, M.; et al. Occurrence of shigellosis in the young and elderly in rural China: results of a 12-month population-based surveillance study. Am. J. Trop. Med. Hyg. 2005, 73, 416–422. [Google Scholar]
- Alam, S.; Bhatnagar, S. Current status of anti-diarrheal and anti-secretory drugs in the management of acute childhood diarrhoea. Indian J. Pediatr. 2006, 73, 693–696. [Google Scholar] [CrossRef]
- Seol, S.Y.; Kim, Y.T.; Jeong, Y.S.; Oh, J.Y.; Kang, H.Y.; Moon, D.C.; Kim, J.; Lee, Y.C.; Cho, D.K.; Lee, J.C. Molecular characterization of antimicrobial resistance in Shigella sonnei isolates in Korea. J. Med. Microbiol. 2006, 55, 871–877. [Google Scholar] [CrossRef]
- von Seidlein, L.; Kim, D.R.; Ali, M.; Lee, H.; Wang, X.; Thiem, V.D.; Canh do, G.; Chaicumpa, W.; Agtini, M.D.; Hossain, A.; et al. A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med. 2006, 3, e353. [Google Scholar]
- Huq, I.; Alam, A.K.; Morris, G.K.; Wathen, G.; Merson, M. Foodborne outbreak of shigellosis caused by an unusual Shigella strain. J. Clin. Microbiol. 1980, 11, 337–339. [Google Scholar]
- CDCP-Centers for Disease Control and Prevention, Shigella ; Annual summary. US Department of Health and Human Services: Atlanta, GA, USA, 2002.
- DuPont, H.L.; Formal, S.B.; Hornick, R.B.; Snyder, M.J.; Libonati, J.P.; Sheahan, D.; LaBrec, E.H.; Kalas, J.P. Pathogenesis of Escherichia coli diarrhea. N. Engl. J. Med. 1971, 285, 1–9. [Google Scholar] [CrossRef]
- Hale, T.L. Bacillary dysentery. In Topley and Wilson’s Microbiology and Microbial Infections; Hansler, W.J., Shuman, M., Eds.; Arnold: London, UK, 1998; pp. 479–493. [Google Scholar]
- Parsot, C.; Ageron, E.; Penno, C.; Mavris, M.; Jamoussi, K.; d’Hauteville, H.; Sansonetti, P.; Demers, B. A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol. Microbiol. 2005, 56, 1627–1635. [Google Scholar] [CrossRef]
- Grais, R.F.; Conlan, A.J.K.; Ferrari, M.J.; Djibo, A.; Le Menach, A.; Bjørnstad, O.N.; Grenfell, B.T. Time is of the essence: exploring a measles outbreak response vaccination in Niamey, Niger. J. R. Soc. Interface 2008, 5, 67–74. [Google Scholar] [CrossRef]
- Mathur, R.; Mathur, Y.N.; Verma, S.D. An outbreak of shigellosis in central India: higher death rate in post-measles shigellosis. J. Diarrhoeal Dis. Res. 1989, 7, 28–29. [Google Scholar]
- Mitra, A.K.; Alvarez, J.O.; Wahed, M.A.; Fuchs, G.J.; Stephensen, C.B. Predictors of serum retinol in children with shigellosis. Am. J. Clin. Nutr. 1998, 68, 1088–1094. [Google Scholar]
- Victora, C.G.; Bryce, J.; Fontaine, O.; Monasch, R. Reducing deaths from diarrhoea through oral rehydration therapy. Bull. World Health Organ. 2000, 78, 1246–1255. [Google Scholar]
- Lev, E. Ethno-diversity within current ethno-pharmacology as part of Israeli traditional medicine-A review. J. Ethnobiol. Ethnomed. 2006, 2, 4. [Google Scholar] [CrossRef]
- Hussain, K.; Shahazad, A.; Hussain, S.Z. An ethnobotanical survey of important wild medicinal plants of Hattar district Haripur, Pakistan. Ethnobot. Leafl. 2008, 12, 29–35. [Google Scholar]
- Sheldon, J.W.; Balick, M.J.; Laird, S.A. Medicinal plants: can utilization and conservation coexist? Advances in Economic Botany. Econ. Bot. 1997, 12, 1–104. [Google Scholar]
- Tene, V.; Malag, O.; Finzi, P.V.; Vidari, G.; Armijos, C.; Zaragoza, T. An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J. Ethnopharmacol. 2007, 111, 63–81. [Google Scholar] [CrossRef]
- Hack, S.K. Do not put too much value on conventional medicine. J. Ethnopharmacol. 2006, 100, 37–39. [Google Scholar]
- Sharma, P.P.; Mujundar, A.M. Traditional knowledge on plants from Toranmal Plateau of Maharastra. Indian J. Tradit. Know. 2003, 2, 292–296. [Google Scholar]
- Cos, P.; Hermans, N.; De Bruyne, T.; Apers, S.; Sindambiwe, J.B.; Berghe, D.V.; Pieters, L.; Vlietinkck, A.J. Further evaluation of Rwandan medicinal plant extracts for their antimicrobial and antiviral activities. J. Ethnopharmacol. 2002, 79, 155–163. [Google Scholar] [CrossRef]
- Muschietti, L.; Derita, M.; Sülsen, V.; Muñoz, J.D.; Ferraro, G.; Zacchino; S.; Martino, V. In vitro antifungal assay of traditional Argentine medicinal plants. J. Ethnopharmacol. 2005, 102, 233–238. [Google Scholar] [CrossRef]
- Wannissorn, B.; Jarikasem, S.; Siriwangchai, T.; Thubthimthed, S. Antibacterial properties of essential oils from Thai medicinal plants. Fitoterapia 2005, 76, 233–236. [Google Scholar] [CrossRef]
- Olajuyigbe, O.O.; Babalola, A.E.; Afolayan, A.J. Antibacterial and phytochemical screening of crude ethanolic extracts of Waltheria indica Linn. Afr. J. Microbiol. Res. 2011, 5, 3760–3764. [Google Scholar]
- Elisabetsky, E.; Amadar, T.A.; Albuquerque, R.R.; Nunes, D.S.; Carvalho, Ado, C. Analgesic activity of Psychotria colorata (Willd Ext. & S) Muell. Arg. alkaloid. J. Ethnopharmcol. 1995, 48, 77–83. [Google Scholar]
- Patwardhan, B.; Warude, D.; Pushpangadan, P.; Bhatt, N. Ayurveda and traditional Chinese medicine: A comparative overview. Evid.-Based Compl. Alt. 2005, 2, 465–473. [Google Scholar]
- Latz, P. Bushfires and Bushtuckers: Aboriginal Plant Use in Central Australia; IAD Press: Alice Springs, Australia, 2001. [Google Scholar]
- Thomson, L.A.J.; Turnbull, J.W.; Maslin, B.R. The utilization of Australian species of Acacia, with particular reference to those of the subtropical dry zone. J. Arid. Environ. 1994, 27, 279–295. [Google Scholar] [CrossRef]
- Lithgow, M.G. 60 Wattles of the Chinchilla and Murilla Shires; Private publication: Chinchilla, Australia, 1997. [Google Scholar]
- Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef]
- Sanders, C.C.; Sanders, W.E., Jr. β-Lactamase resistance in gram-negative bacteria: global trends and clinical impact. Clin. Infect. Dis. 1992, 15, 824–839. [Google Scholar] [CrossRef]
- Fernandez, G.M.L.; Ramos, J.M.; Marrero, J.; Cuenca, M.; Fernandez, R.R.; de Gorgolas, M. Bacteremic pneumococcal infections in immunocompromised patients without AIDS: the impact of beta-lactam resistance on mortality. Int. J. Infect. Dis. 2003, 7, 46–52. [Google Scholar] [CrossRef]
- Ako-Nai, A.K.; Ikem, I.C.; Aziba, A.; Ajayi, A.A.; Onipede, O.A. Bacteriological examination of chronic osteomyelitis cases in Ile-Ife, South Western Nigeria. Afr. J. Clin. Exp. Microbiol. 2003, 4, 41–51. [Google Scholar]
- Oliveira, D.C.; Tomasz, A.; de Lencastre, H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin resistant Staphylococcus aureus. Lancet Infect. Dis. 2002, 2, 180–189. [Google Scholar] [CrossRef]
- Pankey, G.A.; Sabath, L.D. Clinical Relevance of Bacteriostatic versus Bactericidal mechanisms of action in the treatment of Gram positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef]
- Doit, C.; Barre, J.; Cohen, R.; Bonacorsi, S.; Bourrillon, A.; Bingen, E.H. Bactericidal activity against intermediately cephalosporin-resistant Streptococcus pneumoniae in cerebrospinal fluid of children with bacterial meningitis treated with high doses of cefotaxime and vancomycin. Antimicrob. Agents Chemother. 1997, 41, 2050–2052. [Google Scholar]
- Friedland, I.R.; Klugman, K.P. Cerebrospinal fluid bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in children with meningitis treated with high-dose cefotaxime. Antimicrob. Agents Chemother. 1997, 41, 1888–1891. [Google Scholar]
- Sculier, J.P.; Klastersky, J. Significance of serum bactericidal activity in Gram negative bacillary bacteremia in patients with and without granulocytopenia. Am. J. Med. 1984, 76, 429–435. [Google Scholar] [CrossRef]
- Peterson, L.R.; Shanholtzer, C.J. Tests for bactericidal effects of antimicrobial agents: technical performance and clinical relevance. Clin. Microbiol. Rev. 1992, 5, 420–432. [Google Scholar]
- Methods for determining bactericidal activity of antimicrobial agents; Approved guideline M26-A; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1998.
- Karaman, I.; Sahin, F.; Gulluce, M.; Ogutcu, H.; Sngul, M.; Adiguzel, A. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J. Ethnopharmacol. 2003, 85, 231–235. [Google Scholar] [CrossRef]
- Eloff, J.N. Which extractant should be used for the screening and isolation of antimicrobial components from plants? J. Ethnopharmacol. 1998, 60, 1–8. [Google Scholar] [CrossRef]
- Gatsing, D.; Nkeugoauapi, C.F.N.; Nkah, B.F.N.; Kuiate, J.R.; Tchouanguep, F.M. Antibacterial activity, bioavailability and acute toxicity evaluation of the leaf extract of Alchornea cordifolia (Euphorbiaceae). Int. J. Pharmacol. 2010, 6, 173–182. [Google Scholar] [CrossRef]
- Carbonnelle, B.; Denis, F.; Marmonier, A.; Pinon, G.; Vague, R. Bacteriologie médicale: Techniques usuelles; SIMEP: Paris, France, 1987; pp. 228–282. [Google Scholar]
- Mims, C.A.; Playfair, J.H.L.; Roitt, I.M.; Wakelin, D.; Williams, R. Antimicrobials and chemotherapy. Med. Microbiol. Rev. 1993, 35, 1–34. [Google Scholar]
- Haslam, E. Plant Polyphenols; Cambridge University Press: Cambridge, NY, USA, 1989. [Google Scholar]
- Gajendiran, N.; Mahadevan, A. Utilization of catechin by Rhizobium sp. Plant Soil 1990, 108, 263–266. [Google Scholar] [CrossRef]
- Olajuyigbe, O.O.; Afolayan, A.J. Phytochemical assessment and antioxidant activities of alcoholic and aqueous extracts of Acacia mearnsii De Wild. Int. J. Pharmacol. 2011, 7, 856–861. [Google Scholar] [CrossRef]
- Doss, A.; Mubarack, H.M.; Dhanabalan, R. Pharmacological importance of Solanum trilobatum. Indian J. Sci. Technol. 2009, 2, 41–43. [Google Scholar]
- Faizi, S.; Khan, R.A.; Azher, S.; Khan. S.A.; Tauseef Ahmad, S.A. New antimicrobial alkaloids from the roots of Polyalthia longifolia var. pendula. Planta Med. 2003, 69, 350–355. [Google Scholar] [CrossRef]
- Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida, T.; Hatano, T.; Ito, H.; Hirai, Y. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol. Immunol. 2004, 48, 251–261. [Google Scholar]
- Pepeljnjak, S.; Kalodera, Z.; Zoyko, M. Antimicrobial activity of flavonoids from Pelargonium radula (Cav.) L’Herit. Acta Pharmaceut. 2005, 55, 431–435. [Google Scholar]
- Mandalari, G.; Bennett, R.N.; Bisignano, G.; Tombetta, D.; Saija, A.; Faulds, C.B.; Gasson, M.J.; Narbad, A. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J. Appl. Microbiol. 2007, 103, 2056–2064. [Google Scholar] [CrossRef]
- Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother. Res. 2006, 20, 454–457. [Google Scholar]
- Baharaminejad, S.; Asenstorfer, R.E.; Riley, I.T.; Schultz, C.J. Analysis of the antimicrobial activity of flavonoids and saponins isolated from the shoots of Oats (Avena sativa L.). J. Phytopathol. 2007, 156, 1–7. [Google Scholar]
- Yao, J.; Moellering, R. Antibacterial agents. In Manual of Clinical Microbiology; Murray, P., Baron, E., Pfaller, M., Tenover, F., Yolken, R., Eds.; ASM Press: Washington, DC, USA, 1995; pp. 1281–1290. [Google Scholar]
- Yani, V.V.; Oyedeji, O.A.; Grierson, D.S.; Afolayan, A.J. Chemical analysis and antimicrobial activity of essential oil extracted from Helichrysum aureonitens. S. Afr. J. Bot. 2005, 71, 239–241. [Google Scholar]
- Sofidiya, M.O.; Odukoya, O.A.; Afolayan, A.J.; Familoni, O.B. Phenolic contents, antioxidant and antibacterial activities of Hymenocardia acida. Nat. Prod. Res. 2009, 23, 168–177. [Google Scholar] [CrossRef]
- Afolayan, A.J.; Ashafa, A.O.T. Chemical composition and antimicrobial activity of the essential oil from Chrysocoma ciliate L. leaves. J. Med. Plants Res. 2009, 3, 390–394. [Google Scholar]
- Adwan, K.; Abu-Hasan, N. Gentamicin resistance in clinical strains of Enterobacteriaceae associated with reduced gentamicin uptake. Folia Microbiol. 1998, 43, 438–440. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Alakomi, H.L.; Oksman-Caldentey, K.M. Bioactive berry compounds- novel tools against human pathogens. Appl. Microbiol. Biotechnol. 2004, 67, 8–18. [Google Scholar]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci.Tech. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Field, J.A.; Lettinga, G. Toxicity of tannic compounds to microorganisms. Plants Polyphenols: Synthesis, Properties, Significance. Basic Life Sci. 1992, 59, 673–692. [Google Scholar]
- Viljoen, A.; Van Vuuren, S.; Ernest, E.; Klepser, M.; Demirci, B.; Basser, H.; Van Wyk, B.E. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial and essential oil composition of Cape-Dutch remedy. J. Ethnopharmacol. 2003, 88, 137–143. [Google Scholar] [CrossRef]
- Erasto, P.; Bojase-Moleta, G.; Majinda, R.R.T. Antimicrobial and antioxidant flavonoids from the roots wood of Bolusathus spesiosus. Phytochemistry 2004, 65, 875–880. [Google Scholar] [CrossRef]
- Basri, D.F.; Fan, S.H. The potential of aqueous and acetone extracts of galls of Queercus infectoria as antibacterial agents. Indian J. Pharmacol. 2005, 37, 26–29. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Micro. Infect. 2000, 6, 509–515. [Google Scholar]
- Cheesbrough, M. Medical Laboratory Manual for Tropical Countries, ELBS ed; Tropical health technology publications and Butterworth–Heinemann Ltd: Cambridge, UK, 2002; Volume 2, pp. 2–392. [Google Scholar]
- Bauer, A.W.; Kirby, W.M. Sherris, J.C.; Truck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar]
- Wikler, M.A. Performance Standards for Antimicrobial Susceptibility Testing; Seventeenth Informational Supplement; Part M2-A9. M100-S17; C.L.S.I. (Clinical and Laboratory Standard Institute): Pennsylvania, PA, USA, 2007. [Google Scholar]
- Wikler, M.A. Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement; M100-S18; C.L.S.I. (Clinical and Laboratory Standard Institute): Pennsylvania, PA, USA, 2008. [Google Scholar]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Broth micro-dilution method for determination of susceptibility of Escherichia coli and Staphylococcus aureus to the essential oil of Malaleuca alterifolia (Tea tree oil). Microbios 1995, 82, 181–185. [Google Scholar]
- Iwaki, K.; Koya-Miyata, S.; Kohno, K.; Ushio, S.; Fukuda, S. Antimicrobial activity of Polygonum tintorium Lour: Extract against oral pathogenic bacteria. Nat. Med. 2006, 53, 72–79. [Google Scholar]
- Khan, A.; Rhaman, M.; Islam, S. Antibacterial, antifungal and cytotoxic activities of Tuberous Roots of Amorphophallus campanulatus. Turk. J. Biol. 2007, 31, 167–172. [Google Scholar]
- Shanholtzer, C.J.; Peterson, L.R.; Mohn, M.L.; Moody, J.A.; Gerding, D.N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob. Agents Chemother. 1984, 26, 214–219. [Google Scholar] [CrossRef]
- Gerding, D.N.; Peterson, L.R.; Moody, J.A.; Fasching, C.E. Mezlocillin, ceftizoxime, and amikacin alone and in combination against six Enterobacteriaceae in a neutropenic site in rabbits. J. Antimicrob. Chemother. 1985, 15 (Suppl. A), 207–219. [Google Scholar]
- Bamberger, D.M.; Peterson, L.R.; Gerding, D.N.; Moody, J.A.; Fasching, C.E. Ciprofloxacin, azlocillin, ceftizoxime, and amikacin alone and in combination against Gram negative bacilli in an infected chamber model. J. Antimicrob. Chemother. 1986, 18, 51–63. [Google Scholar] [CrossRef]
- Moody, J.A.; Fasching, C.E.; Peterson, L.R.; Gerding, D.N. Ceftazidime and amikacin alone and in combination against Pseudomonas aeruginosa and Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 1987, 6, 59–67. [Google Scholar] [CrossRef]
- Fasching, C.E.; Peterson, L.R.; Moody, J.A.; Sinn, L.M.; Gerding, D.N. Treatment evaluation of experimental staphylococcal infections comparing β-lactam, lipopeptide, and glycopeptide antimicrobial therapy. J. Lab. Clin. Med. 1990, 116, 697–706. [Google Scholar]
- Irkin, R.; Korukluoglu, M. Control of Aspergillus niger with garlic, onion and leek extracts. Afr. J. Biotechnol. 2007, 6, 384–387. [Google Scholar]
- Eliopoulos, G.M.; Eliopoulos, C.T. Antibiotic combinations: should they be tested? Clin. Microbiol. Rev. 1988, 1, 139–156. [Google Scholar]
- Eliopoulos, G.M.; Moellering, R.C. Antimicrobial combinations. In Antibiotics in Laboratory Medicine, 4th; Lorain, V., Ed.; The Williams & Wilkins Co.: Baltimore, MD, USA, 1996; pp. 330–396. [Google Scholar]
- Cruishank, R.; Duguid, J.P.; Marmion, B.P.; Swain, R.H.A. Medical Microbiology. The Practice of Medical Microbiology, 12th ed; Churchill Livingstone: London, UK, 1975. [Google Scholar]
- Pankuch, G.A.; Jacobs, M.R.; Appelbaum, P.C. Study of comparative antipneumococcal activities of penicillin G, RP 59500, erythromycin, sparfloxacin, ciprofloxacin, and vancomycin by using time-kill methodology. Antimicrob. Agents Chemother. 1994, 38, 2065–2072. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Olajuyigbe, O.O.; Afolayan, A.J. In Vitro Antibacterial and Time-Kill Assessment of Crude Methanolic Stem Bark Extract of Acacia mearnsii De Wild against Bacteria in Shigellosis. Molecules 2012, 17, 2103-2118. https://doi.org/10.3390/molecules17022103
Olajuyigbe OO, Afolayan AJ. In Vitro Antibacterial and Time-Kill Assessment of Crude Methanolic Stem Bark Extract of Acacia mearnsii De Wild against Bacteria in Shigellosis. Molecules. 2012; 17(2):2103-2118. https://doi.org/10.3390/molecules17022103
Chicago/Turabian StyleOlajuyigbe, Olufunmiso Olusola, and Anthony Jide Afolayan. 2012. "In Vitro Antibacterial and Time-Kill Assessment of Crude Methanolic Stem Bark Extract of Acacia mearnsii De Wild against Bacteria in Shigellosis" Molecules 17, no. 2: 2103-2118. https://doi.org/10.3390/molecules17022103
APA StyleOlajuyigbe, O. O., & Afolayan, A. J. (2012). In Vitro Antibacterial and Time-Kill Assessment of Crude Methanolic Stem Bark Extract of Acacia mearnsii De Wild against Bacteria in Shigellosis. Molecules, 17(2), 2103-2118. https://doi.org/10.3390/molecules17022103