Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solubility Studies
2.2. Influence of PAMAM on Antifungal Activity of KET
Fungal species | MIC (μg/mL) | ||||
---|---|---|---|---|---|
KET | KET + PAMAM-OH | KET + PAMAM-NH2 | |||
G2 | G3 | G2 | G3 | ||
Candida albicans 1103055/11 | 0.064 | 0.032 | 0.032 | 0.016 | 0.016 |
Candida albicans 1103059/11 | 0.064 | 0.032 | 0.032 | 0.008 | 0.016 |
Candida krusei 1103055/11 | 0.064 | 0.064 | 0.064 | 0.064 | 0.032 |
Candida glabrata 1102890/11 | 0.064 | 0.064 | 0.032 | 0.016 | 0.032 |
Candida dubliniensis 1103124/11 | 0.016 | 0.016 | 0.016 | 0.004 | 0.016 |
Candida parapsilosis ATCC 22019 | 0.016 | 0.016 | 0.008 | 0.008 | 0.008 |
Fungal species | MFC (μg/mL) | ||||
---|---|---|---|---|---|
KET | KET + PAMAM-OH | KET + PAMAM-NH2 | |||
G2 | G3 | G2 | G3 | ||
Candida albicans 1103055/11 | 2 | 2 | 2 | 0.5 | 1 |
Candida albicans 1103059/11 | 32 | 32 | 16 | 2 | 8 |
Candida krusei 1103055/11 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Candida glabrata 1102890/11 | 64 | 64 | 64 | 4 | 16 |
Candida dubliniensis 1103124/11 | 1 | 0.125 | 0.25 | 0.5 | 0.125 |
Candida parapsilosis ATCC 22019 | 0.032 | 0.032 | 0.032 | 0.016 | 0.016 |
2.3. Antifungal Activity of Hydrogels with KET and PAMAM Dendrimers
Ingredient (g) | Formulation code | |||||
---|---|---|---|---|---|---|
H0 | H1 | H2 | H3 | H4 | H5 | |
KET | - | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Carbopol 980 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
20% NaOH | q.s. | q.s. | q.s. | q.s | q.s. | q.s |
Propylene glycol | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Tween 80 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Bronopol | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
PAMAM-NH2 G2 | - | - | 0.3 | 0.6 | - | - |
PAMAM-NH2 G3 | - | - | - | - | 0.3 | 0.6 |
Purified water (up to) | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Fungal species | Zone of inhibition (mm) | |||||||
---|---|---|---|---|---|---|---|---|
KET | Nizoral | H0 | H1 | H2 | H3 | H4 | H5 | |
C. albicans 1103055/11 | 25.6 ± 0.1 | 15.0 ± 0.2 | 5.0 ± 0.1 | 16.2 ± 0.3 | 18.3 ± 0.4 | 18.8 ± 0.5 | 16.9 ± 0.4 | 17.3 ± 0.2 |
C. albicans 1103059/11 | 24.1 ± 0.3 | 14.4 ± 0.4 | 4.5 ± 0.2 | 12.2 ± 0.2 | 17.3 ± 0.3 | 17.4 ± 0.4 | 16.4 ± 0.5 | 18.5 ± 0.4 |
C. glabrata 1102890/11 | 26.4 ± 0.1 | 16.0 ± 0.5 | 5.0 ± 0.2 | 21.9 ± 0.2 | 25.3 ± 0.4 | 20.4 ± 0.4 | 23.5 ± 0.5 | 19.7 ± 0.3 |
C. dubliniensis 1103124/11 | 24.4 ± 0.4 | 15.0 ± 0.3 | 5.2 ± 0.3 | 17.7 ± 0.5 | 20.4 ± 0.2 | 19.9 ± 0.3 | 19.3 ± 0.3 | 16.4 ± 0.4 |
C. parapsilosis ATCC 22019 | 48.4 ± 0.3 | 33.0 ± 0.4 | 5.0 ± 0.1 | 35.0 ± 0.6 | 38.9 ± 0.2 | 31.8 ± 0.5 | 37.7 ± 0.3 | 37.0 ± 0.2 |
2.4. In Vitro Release of KET
3. Experimental
3.1. Materials
3.2. Solubility Studies
3.3. HPLC Analysis
3.4. Test Organisms
3.5. Antifungal Agent
3.6. Broth Microdilution Method
3.7. Preparation of Hydrogels
3.8. Plate Diffusion Method
3.9. In Vitro Release of KET
3.10. Data analysis
4. Conclusions
Acknowledgements
References and Notes
- European Pharmacopoeia, 6th ed; Council of Europe: Strasbourg, France, 2007; Volume 2, pp. 2216–2217.
- Borgers, M. Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Rev. Infect. Dis. 1980, 2, 520–524. [Google Scholar] [CrossRef]
- Kauffman, C.A.; Carver, P.L. Use of azoles for systemic antifungal therapy. Adv. Pharmacol. 1997, 39, 143–189. [Google Scholar] [CrossRef]
- Marriot, M.S. Inhibition of sterol biosynthesis in Candida albicans by imidazole-containing antifungals. J. Gen. Microbiol. 1980, 117, 253–255. [Google Scholar]
- Gil, C.; Perez-Diaz, R.; Nombela, C. Inhibitory and morphological effects of several antifungal agents on three types of Candida albicans morphological mutants. J. Med. Vet. Mycol. 1994, 32, 151–162. [Google Scholar]
- Najlah, M.; D’Emanuele, A. Crossing cellular barriers using dendrimer nanotechnologies. Curr. Opin. Pharmacol. 2006, 6, 522–527. [Google Scholar] [CrossRef]
- Svenson, S. Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm. 2009, 71, 445–462. [Google Scholar] [CrossRef]
- Tomalia, D.A. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichimica Acta 2004, 37, 39–57. [Google Scholar]
- Tomalia, D.A. Dendrimer research. Science 1991, 252, 1231–1237. [Google Scholar]
- Patri, A.K.; Majoros, I.J.; Baker, J.R., Jr. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 2002, 6, 466–471. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: Applications in different routes of drug administration. J. Pharm. Sci. 2008, 97, 123–143. [Google Scholar] [CrossRef]
- Tulu, M.; Aghatabay, N.M.; Senel, M.; Dizman, C.; Parali, T.; Dulger, B. Synthesis, characterization and antimicrobial activity of water soluble dendritic macromolecules. Eur. J. Med. Chem. 2009, 44, 1093–1099. [Google Scholar] [CrossRef]
- Polcyn, P.; Jurczak, M.; Rajnisz, A.; Solecka, J.; Urbańczyk-Lipkowska, Z. Design of antimicrobially active small amphiphilic peptide dendrimers. Molecules 2009, 14, 3881–3905. [Google Scholar] [CrossRef]
- 14. Janiszewska, J.; Sowińska, M.; Rajnisz, A.; Solecka, J.; Łącka, I.; Milewski, S.; Urbańczyk-Lipkowska, Z. Novel dendrimeric lipopeptides with antifungal activity. Bioorg. Med. Chem. Lett. 2012, 22, 1388–1393. [Google Scholar] [CrossRef]
- Winnicka, K.; Sosnowska, K.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Poly(amidoamine) dendrimers increase antifungal activity of clotrimazole. Biol. Pharm. Bull. 2011, 34, 1129–1133. [Google Scholar] [CrossRef]
- Cheng, Y.; Qu, H.; Ma, M.; Xu, Z.; Xu, P.; Fang, Y.; Xu, T. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur. J. Med. Chem. 2007, 42, 1032–1038. [Google Scholar] [CrossRef]
- Lebreton, S.; Newcombe, N.; Bradley, M. Antibacterial single-bead screening. Tetrahedron 2003, 59, 10213–10222. [Google Scholar] [CrossRef]
- Balogh, L.; Swanson, D.R.; Tomalia, D.A.; Hagnauer, G.L.; McManus, A.T. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett. 2001, 1, 18–21. [Google Scholar] [CrossRef]
- Prajapati, R.N.; Tekade, R.K.; Gupta, U.; Gajbhiye, V.; Jain, N.K. Dendrimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Mol. Pharm. 2009, 6, 940–950. [Google Scholar] [CrossRef]
- Kovacs, K.; Stampf, G.; Klebovich, I.; Antal, I.; Ludanyi, K. Aqueous solvent system for the solubilization of azole compounds. Eur. J. Pharm. Sci. 2009, 36, 352–358. [Google Scholar] [CrossRef]
- Smelcerovic, A.; Knezevic-Jugovic, Z.; Petronijevic, Z. Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr. Pharm. Des. 2008, 14, 3168–3195. [Google Scholar] [CrossRef]
- Lopez, A.I.; Reins, R.Y.; McDermott, A.M.; Trautner, B.W.; Cai, C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol. Biosyst. 2009, 5, 1148–1156. [Google Scholar] [CrossRef]
- Venuganti, V.V.K.; Perumal, O.P. Poly(amidoamine) dendrimers as skin penetration enhancers: Influence of charge, generation and concentration. J. Pharm. Sci. 2009, 98, 2345–2356. [Google Scholar] [CrossRef]
- Alberti, I.; Kalia, Y.N.; Naik, A.; Bonny, J.; Guy, R.H. Effect of ethanol and isopropyl myristate on the availability of topical terbinafine in human stratum corneum, in vivo. Int. J. Pharm. 2001, 219, 11–19. [Google Scholar] [CrossRef]
- Salerno, C.; Carlucci, A.M.; Bregni, C. Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms. AAPS PharmSciTech. 2010, 11, 986–993. [Google Scholar] [CrossRef]
- Burnette, R.R.; Ongpipattanakul, B. Characterization of the permselective properties of excised human skin during iontophoresis. J. Pharm. Sci. 1987, 76, 765–773. [Google Scholar] [CrossRef]
- Gardikis, K.; Hatziantoniou, S.; Viras, K.; Wagner, M.; Demetzos, C. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int. J. Pharm. 2006, 318, 118–123. [Google Scholar] [CrossRef]
- Venuganti, V.V.K.; Perumal, O.P. Effect of poly(amidoamine) (PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int. J. Pharm. 2008, 361, 230–238. [Google Scholar] [CrossRef]
- Cheng, Y.; Man, N.; Xu, T.; Fu, R.; Wang, X.; Wen, L. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci. 2007, 96, 595–602. [Google Scholar] [CrossRef]
- Akimoto, T.; Aoyagi, T.; Minoshima, J.; Nagase, Y. Polymeric percutaneous drug penetration enhancer. Synthesis and enhancing property of PEG/PDMS block copolymer with cationic end group. J. Control. Release 1997, 49, 229–241. [Google Scholar] [CrossRef]
- Aoyagi, T.; Terashima, O.; Suzuki, N.; Matsui, K.; Nagase, Y. Polymerization of benzalkonium chloride-type monomer and application to percutaneous drug absorption enhancer. J. Control. Release 1990, 13, 63–71. [Google Scholar] [CrossRef]
- Tannergren, C.; Knutson, T.; Knutson, L.; Lennernäs, H. The effect of ketoconazole on the in vivo intestinal permeability of fexofenadine using a regional perfusion technique. Br. J. Clin. Pharmacol. 2003, 55, 182–190. [Google Scholar]
- De Hoog, G.S.; Guarro, J. Atlas of Clinical Fungi, 1st ed; Centraalbureau voor Schimmelcultures: Baarn and Delft, The Netherlands, 1995. [Google Scholar]
- Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast. In Approved Standard, CLSI document M27-A3, 3rd edClinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2008.
- Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast. In Third Informational Supplement, CLSI document M27-S3; Standards Institute (CLSI): Wayne, PA, USA, 2008.
- Canton, E.; Peman, J.; Viudes, A.; Quindos, G.; Gobernado, M.; Espinel-Ingroff, A. Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagn. Microbiol. Infect. Dis. 2003, 45, 203–206. [Google Scholar]
- Nesseem, D.I. Formulation and evaluation of itraconazole via liquid crystal for topical delivery system. J. Pharm. Biomed. Anal. 2001, 26, 387–399. [Google Scholar]
- Sample Availability: Not available.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Winnicka, K.; Wroblewska, M.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity. Molecules 2012, 17, 4612-4624. https://doi.org/10.3390/molecules17044612
Winnicka K, Wroblewska M, Wieczorek P, Sacha PT, Tryniszewska E. Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity. Molecules. 2012; 17(4):4612-4624. https://doi.org/10.3390/molecules17044612
Chicago/Turabian StyleWinnicka, Katarzyna, Magdalena Wroblewska, Piotr Wieczorek, Pawel Tomasz Sacha, and Elzbieta Tryniszewska. 2012. "Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity" Molecules 17, no. 4: 4612-4624. https://doi.org/10.3390/molecules17044612
APA StyleWinnicka, K., Wroblewska, M., Wieczorek, P., Sacha, P. T., & Tryniszewska, E. (2012). Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity. Molecules, 17(4), 4612-4624. https://doi.org/10.3390/molecules17044612