Acuminatol and Other Antioxidative Resveratrol Oligomers from the Stem Bark of Shorea acuminata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
Position | δC | δH mult. ( J in Hz) | 13C-1H HMBC | 1H-1H COSY | 1H-1H NOESY |
---|---|---|---|---|---|
1a | 129.9 | - | 3a(5a), 8a | - | |
2a/6a | 129.3 | 7.09 d (8.6) | 7a | 3a(5a) | 8a, 14a, 7a, 3a(5a) |
3a/5a | 115.2 | 6.76 d (8.6) | OH4a | 2a(6a) | 2a(6a), OH4a |
4a | 158.9 | - | 3a(5a), OH4a | - | - |
7a | 87.5 | 5.67 d (11.7) | 2a(6a), 8a | 8a | 8a, 14a, 2a(6a) |
8a | 49.1 | 4.19 d (11.7) | 7a, 14a | 7a | 7a, 2a(6a), 2b(6b) |
9a | 141.3 | - | 7a, 8a, 8b | - | - |
10a | 120.3 | - | 7b, 14a, 12a, OH11a | - | - |
11a | 156.5 | - | 7b, 12a, OH11a | - | - |
12a | 100.5 | 6.41 d (1.5) | 14a, OH13a | 14a | 14a, OH11a |
13a | 157.7 | - | OH13a | - | - |
14a | 104.6 | 6.18 br s | OH13a | 12a | 7a, 12a, 2a(6a), OH13a |
1b | 131.9 | - | 7b, 3b(5b) | - | - |
2b/6b | 129.1 | 7.13 d (8.2) | 2b(6b) | 3b/5b | 7b, 3b(5b), 8a |
3b/5b | 114.2 | 6.57 d (8.2) | OH4b | 2b(6b) | 2b(6b) |
4b | 155.0 | - | 2b(6b), OH4b | - | - |
7b | 45.0 | 5.46 br s | - | 8b | 8b, 2b(6b) |
8b | 71.0 | 5.09 br s | 7b, 14b, 9a | 7b | 7b, 14b |
9b | 141.6 | - | 7b, 8a | - | - |
10b | 116.7 | - | 8a, 12b, 14b | - | - |
11b | 158.1 | - | - | - | - |
12b | 95.4 | 6.11 d (1.8) | 14b, OH13b | 14b | 14b, OH13b |
13b | 156.0 | - | - | - | - |
14b | 106.4 | 6.94 d (1.8) | OH13b | 12b | 8b, 12b, OH13b |
OH8b | - | 3.63 | - | ||
OH11a | - | 8.57 | - | ||
OH4a | - | 8.54 | - | ||
OH13b | - | 8.23 | - | ||
OH13a | - | 8.22 | - | ||
OH4b | - | 8.05 | - |
Compound | δH mult. ( J in Hz) | |||
---|---|---|---|---|
7a | 8a | 7b | 8b | |
1 a | β: 5.67 (d, 11.7) | α: 4.19 (d, 11.7) | β: 5.46 (br s) | β: 5.09 (br s) |
(+)-Ampelopsin A b | α: 5.77 (d, 11.7) | β: 4.17 (br d, 11.7) | α: 5.45 (d, 5.0) | β: 5.42 (br s) |
(−)-Hemsleyanol A a | β: 5.75 (d, 9.8) | α: 5.41 (d, 9.8) | α: 5.07 (d, 5.9) | β: 4.76 (br d) |
(+)-Balanocarpol a | β: 5.69 (d, 9.3) | α: 5.16 (br d, 9.3) | α: 4.90 (br s) | α: 5.40 (br s) |
2.2. Antioxidant Activity
2.2.1. DPPH Assay
Compound | DPPH radical scavenging activities (IC50, mM) | BCLA method(IC50, mM) | Cytotoxic activities on Vero cell lines (LC50, µM) |
---|---|---|---|
1 | 10.06 ± 0.05 f | 0.18 ± 0.01 a | 400 |
2 | 4.21 ± 0.23 d | 0.22 ± 0.02 a | 597 |
3 | 6.29 ± 0.05 e | 0.18 ± 0.00 a | 208 |
4 | 1.54 ± 0.10 b | 0.11 ± 0.00 a | 830 |
5 | 0.84 ± 0.02 a | 0.10 ± 0.01 a | 759 |
6 | 2.78 ± 0.16 c | 0.10 ± 0.01 e | 161 |
AscA z | 0.68 ± 0.00 a | 25.19 ± 1.74 b | - |
BHT z | 0.95 ± 0.05 a | 0.09 ± 0.00 a | - |
2.2.2. BCLA Assay
2.3. Cytotoxicity Assay
3. Experimental
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Antioxidant Assays
3.4.1. DPPH Assay
3.4.2. BCLA Assay
3.5. Cytotoxicity Assay
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
References
- Xiao, K.; Zhang, H.-J.; Xuan, L.-J.; Zhang, J.; Xu, Y.-M.; Bai, D.-L. Stibenoids: Chemistry and bioactivities. Stud. Nat. Prod. Chem. 2008, 34, 453–646. [Google Scholar] [CrossRef]
- Shen, T.; Wong, X.-N.; Lou, H.-X. Natural stilbenes: An overview. Nat. Prod. Rep. 2009, 26, 916–935. [Google Scholar] [CrossRef]
- Lin, M.; Yao, C.-S. Natural oligostilbenes. Stud. Nat. Prod. Chem. 2006, 33, 601–644. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. 2011, 50, 586–621. [Google Scholar]
- Morikawa, T.; Xu, F.; Matsuda, H.; Yoshikawa, M. Structures of novel norstilbene dimer, longusone A, and three new stilbene dimers, longusols A, B, and C, with antiallergic and radical scavenging activities from Egyptian natural medicine Cyperus longus. Chem. Pharm. Bull. 2010, 58, 1379–1385. [Google Scholar] [CrossRef]
- Ito, T.; Tanaka, T.; Nakaya, K.; Iinuma, M.; Takahashi, Y.; Naganawa, H.; Ohyama, M.; Nakanishi, Y.; Bastow, K.F.; Lee, K.-H. A new resveratrol octamer, vateriaphenol A, in Vateria indica. Tetrahedron Lett. 2001, 42, 5909–5912. [Google Scholar]
- He, S.; Wu, B.; Pan, Y.; Jiang, L. Stilbene oligomers from Parthenocissus laetevirens: Isolation, biomimetic synthesis, absolute configuration, and implication of antioxidative defense system in the plant. J. Org. Chem. 2008, 73, 5233–5241. [Google Scholar] [CrossRef]
- He, S.; Jiang, L.; Wu, B.; Li, C.; Pan, Y. Chunganenol: An unusual antioxidative resveratrol hexamer from Vitis chunganensis. J. Org. Chem. 2009, 74, 7966–7969. [Google Scholar] [CrossRef]
- Nitta, T.; Arai, T.; Takamatsu, H.; Inatomi, Y.; Murata, H.; Iinuma, M.; Tanaka, T.; Ito, T.; Asai, F.; Ibrahim, I.; et al. Antibacterial activity of extracts preepared from tropical and subtropical plants on Methicillin-Resistant Staphylococcus aureus. J. Health Sci. 2002, 48, 273–276. [Google Scholar] [CrossRef]
- Chung, E.Y.; Roh, E.; Kwak, J.A.; Lee, H.S.; Lee, C.K.; Han, S.B.; Kim, Y. Alpha-viniferin suppresses the signal transducer and activation of transcription-1 (STAT-1)-inducible inflammatory genes in interferen-gamma-stimulated macrophages. J. Pharmacol. Sci. 2010, 112, 405–414. [Google Scholar] [CrossRef]
- Oshima, Y.; Namao, K.; Kamijou, A.; Matsuoko, S.; Nakano, M.; Terao, K.; Ohizumi, Y. Powerful hepatoprotective and hepatotoxic plant oligostilbenes, isolated from the oriental medicinal plant Vitis coignetiae (Vitaceae). Experientia 1995, 51, 63–66. [Google Scholar] [CrossRef]
- Ito, T.; Akao, Y.; Yi, H.; Ohgucgi, K.; Matsumoto, K.; Tanaka, T.; Iinuma, M.; Nozawa, Y. Antitumor effect of resveratrol oligomers against human cancer cell lines and the molecular mechanism of apoptosis induced by vaticanol C. Carcinogenesis 2003, 24, 1489–1497. [Google Scholar] [CrossRef]
- Jiang, L.; He, S.; Sun, C.; Pan, Y. Selective 1O2 quenchers, oligostilbenes, from Vitis wilsonae: Structural identification and biogenetic relationship. Phytochemistry 2012, 77, 294–303. [Google Scholar]
- Symington, C.F. Foresters’ Manual of Dipterocarps: Malayan Forest Records No. 16, 2nd ed; Forest Research Institute and Malaysian Nature Society: Kuala Lumpur, Malaysia, 2004; pp. 175–197. [Google Scholar]
- Cheung, H.T.; Yan, T.C. Constituents of Dipterocarpaceae resins IV. Triterpenes of Shorea acuminata and Shorea resina-nigra. Aust. J. Chem. 1972, 25, 2003–2012. [Google Scholar] [CrossRef]
- Hirano, Y.; Kondo, R.; Sakai, K. Novel stilbenoids isolated from the heartwood of Shorea laeviforia. J. Wood Sci. 2003, 49, 53–58. [Google Scholar] [CrossRef]
- Ito, T.; Tanaka, T.; Ido, Y.; Nakaya, K.-I.; Iinuma, M.; Riswan, S. Stilbenoids isolated from stem bark of Shorea hemsleyana. Chem. Pharm. Bull. 2000, 48, 1001–1005. [Google Scholar] [CrossRef]
- Ito, T.; Furusawa, M.; Iliya, I.; Tanaka, T.; Nakaya, K.-I.; Sawa, R.; Kubota, Y.; Takahashi, Y.; Riswan, S.; Iinuma, M. Rotational isomerism of a resveratrol tetramer, shoreaketone, in Shorea uliginosa. Tetrahedron Lett. 2005, 46, 3111–3114. [Google Scholar]
- Tanaka, T.; Ito, T.; Nakaya, K.; Iinuma, M.; Riswan, S. Oligostilbenoids in stem bark of Vatica rassak. Phytochemistry 2000, 54, 63–69. [Google Scholar]
- Kawabata, J.; Fukushi, E.; Hara, M.; Mizutani, J. Detection of connectivity between equivalent carbons in a C2 molecule using isotopomeric asymmetry: Identification of hopeaphenol in Carex pumila. Magn. Reson. Chem. 1992, 30, 6–10. [Google Scholar]
- Karplus, M. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 1963, 85, 2870–2871. [Google Scholar] [CrossRef]
- Oshima, Y.; Ueno, Y.; Hikino, H.; Yang, L.L.; Yen, K.Y. Ampelopsins A, B and C, new oligostilbenes of Ampelopsis brevipedunculata var. hancei. Tetrahedron 1990, 46, 5121–5126. [Google Scholar] [CrossRef]
- Tanaka, T.; Ito, T.; Ido, Y.; Son, T.-K.; Nakaya, K.; Iinuma, M.; Ohyama, M.; Chelladurai, V. Stilbenoids in the stem bark of Hopea parviflora. Phytochemistry 2000, 53, 1015–1019. [Google Scholar] [CrossRef]
- Siramon, P.; Ohtani, Y. Antioxidative and antiradical activities of Eucalyptuscamaldulensis leaf oils from Thailand. J. Wood Sci. 2007, 53, 498–504. [Google Scholar] [CrossRef]
- Das, A.; Trousdale, M.D.; Ren, S.; Lien, E.J. Inhibitin of herpes simplex virus type 1 and adenovirus type 5 by heterocyclic Schiff bases of aminohydroxyguanidine tosylate. Antivir. Res. 1999, 44, 201–208. [Google Scholar]
- 26 Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Fazari, G.M.; Azilawaty, A.; Nazlina, I.; Yaacob, W.A. Cytotoxic effect and anti-MRSA activity of methanolic extracts of Phyllanthus gracilipes and Phyllanthus columnaris. Sains Malays. 2011, 40, 457–466. [Google Scholar]
- Sample Availability: Samples of the compounds 1–6 are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Muhammad, N.; Din, L.B.; Sahidin, I.; Hashim, S.F.; Ibrahim, N.; Zakaria, Z.; Yaacob, W.A. Acuminatol and Other Antioxidative Resveratrol Oligomers from the Stem Bark of Shorea acuminata. Molecules 2012, 17, 9043-9055. https://doi.org/10.3390/molecules17089043
Muhammad N, Din LB, Sahidin I, Hashim SF, Ibrahim N, Zakaria Z, Yaacob WA. Acuminatol and Other Antioxidative Resveratrol Oligomers from the Stem Bark of Shorea acuminata. Molecules. 2012; 17(8):9043-9055. https://doi.org/10.3390/molecules17089043
Chicago/Turabian StyleMuhammad, Norhayati, Laily B. Din, Idin Sahidin, Siti Farah Hashim, Nazlina Ibrahim, Zuriati Zakaria, and Wan A. Yaacob. 2012. "Acuminatol and Other Antioxidative Resveratrol Oligomers from the Stem Bark of Shorea acuminata" Molecules 17, no. 8: 9043-9055. https://doi.org/10.3390/molecules17089043
APA StyleMuhammad, N., Din, L. B., Sahidin, I., Hashim, S. F., Ibrahim, N., Zakaria, Z., & Yaacob, W. A. (2012). Acuminatol and Other Antioxidative Resveratrol Oligomers from the Stem Bark of Shorea acuminata. Molecules, 17(8), 9043-9055. https://doi.org/10.3390/molecules17089043